在数列{an}中,a1=0,an+1=2an+2(n∈N*).(1)设bn=an+2,求数列{bn}的通项公式;(2){an}中是否存在不同的三项ap,aq,a

在数列{an}中,a1=0,an+1=2an+2(n∈N*).(1)设bn=an+2,求数列{bn}的通项公式;(2){an}中是否存在不同的三项ap,aq,a

题型:不详难度:来源:
在数列{an}中,a1=0,an+1=2an+2(n∈N*).
(1)设bn=an+2,求数列{bn}的通项公式;
(2){an}中是否存在不同的三项ap,aq,ar(p,q,r∈N*)恰好成等差数列?若存在,求出p,q,r的关系;若不存在,说明理由.
答案
(1)bn+1=an+1+2=(2an+2)+2=2(an+2)=2bn,(2分)
又b1=a1+2=2,
所以,数列{bn}是首项为2、公比为2的等比数列,(4分)
所以数列{bn}的通项公式为bn=2n.(6分)
(2)由(1)得an=2n-2.(7分)
假设{an}中是否存在不同的三项ap,aq,ar(p,q,r∈N*)恰好成等差数列,
不妨设p<q<r,则(2p-2)+(2r-2)=2(2q-2),(10分)
于是2p+2r=2q+1,所以1+2r-p=2q-p+1.(12分)
因p,q,r∈N*,且p<q<r,所以1+2r-p是奇数,2q-p+1是偶数,(14分)
1+2r-p=2q-p+1不可能成立,
所以不存在不同的三项ap,aq,ar成等差数列.(16分)
举一反三
公差不为0的等差数列{an}中,4a2011-a20122+4a2013=0,数列{bn}是等比数列,且b2012=a2012,则b2010•b2014=(  )
A.8B.32C.64D.128
题型:乐山模拟难度:| 查看答案
已知数列{an},{bn}满足bn=an+1-an,其中n=1,2,3,…
(1)若a1=1,bn=n,求数列{an}的通项公式;
(2)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.记cn=a6n-1(n≥1),求证:数列{cn}为等差数列.
题型:不详难度:| 查看答案
已知等差数列{an}的前n项和为Sn,若a4+a5=18,则S8等于(  )
A.18B.36C.54D.72
题型:不详难度:| 查看答案
数列{an}中,a3=2,a7=1,若{
1
an+1
}
为等差数列,则a11=(  )
A.0B.
1
2
C.
2
3
D.2
题型:郑州三模难度:| 查看答案
在等差数列{an}中,已知该数列前10项的和为S10=120,那么a5+a6=______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.