(I)∵a1=1,Sn=2an-1, ∴当n=2时,a1+a2=2a2-1,∴a2=2 当n=3时,a1+a2+a3=2a3-1,∴a3=4 当n=4时,a1+a2+a3+a4=2a4-1,∴a4=8 …(3分) (II)∵Sn=2an-1,n∈N*. (1) ∴Sn-1=2an-1-1,n≥2,n∈N*. (2) (1)-(2)得an=2an-1, ∴数列{an}是以1为首项,2为公比的等比数列, ∴an=2n-1…(8分) (III)证明:∵Sn=2an-1=2n-1, ∴SnSn+2=(2n-1)•(2n+2-1)=22n+2-2n+2-2n+1,=22n+2-2n+2+1 ∵2n>0 ∴SnSn+2<.…(13分) |