设{an}为等比数例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,(1)求数列{an}的首项和公比;(2)求数列{Tn}的通项公式

设{an}为等比数例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,(1)求数列{an}的首项和公比;(2)求数列{Tn}的通项公式

题型:广东难度:来源:
设{an}为等比数例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求数列{an}的首项和公比;
(2)求数列{Tn}的通项公式.
答案
(1)设等比数列{an}以比为q,则T1=a1,T2=2a1+a2=a1(2+q).
∵T1=1,T2=4,
∴a1=1,q=2.
(2)设Sn=a1+a2+…+an
由(1)知an=2n-1
∴Sn=1+2+…+2n-1
=2n-1
∴Tn=na1+(n-1)a2+…+2an-1+an
=a1+(a1+a2)+…+(a1+a2+…+an-1+an
=S1+S2+…+Sn
=(2+1)+(2n-1)+…+(2n-1)
=(2+2n+…+2n)-n
=
2-2•2n
1-2
-n

=2n+1-2-n
举一反三
已知数列{an}的前n项和Sn,对一切正整数n,点(n,Sn)都在函数f(x)=2x+2-4的图象上.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=an•log2an,求数列{bn}的前n项和Tn
题型:潍坊二模难度:| 查看答案
等比数列{an}中,a1=2,a4=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若a3,a5分别为等差数列{bn}的第4项和第16项,试求数列{bn}的前项和Sn
题型:无为县模拟难度:| 查看答案
(文)已知等比数列{xn}的公比是不为1的正数,数列{yn}满足yn•logxna=2(a>0,a≠1),当y4=15,y7=9时,数列{yn}的前k项和最大,则k的值为                                           (  )
A.9B.10C.11D.12(yn=23-2n)
题型:松江区模拟难度:| 查看答案
已知等比数列{an}中,a1+a2+a3=7,a1a2a3=8,求an
题型:不详难度:| 查看答案
若递增等比数列{an}满足:a1+a2+a3=
7
8
a1a2a3=
1
64
,则此数列的公比q=(  )
A.
1
2
B.
1
2
或2
C.2D.
3
2
或2
题型:成都一模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.