(1)∵数列{an}是公差为d(d≠0)的等差数列,f(x)=x2,且a1=f(d-1),a5=f(2d-1), ∴(d-1)2+4d=(2d-1)2, ∴d=2,a1=1. ∴an=2n-1; ∵数列{bn}是公比为q的(q∈R)的等比数列,f(x)=x2,且b1=f(q-2),b3=f(q), 则b2=q ∴q2=q2(q-2)2, 解得q=3,或q=1,又b1=1. ∴bn=3n-1;或bn=1 (2)∵对一切n∈N*,都有++…+=an+1成立, ∴当n=1时,=a2, ∵a1=3,b1=1, ∴c1=3,S1=3; 当n≥2时,∵++…+=an+1, ∴++…+=an, ∴=an+1-an=2, ∴cn=2n•3n-1, 故cn=, ∴Sn=c1+c2+…+cn =3+2•2•3+2•3•32+2•n•3n-1 =2(1•30+2•31+3•32+n•3n-1)+1 设x=1•30+2•31+3•32+…+n•3n-1,① 则3•x=1•31+2•32+…+(n-1)•3n-1+n•3n,② ②-①得2x=n•3n-(3n-1+3n-2+…+30)=n•3n-, ∵sn=2x+1, ∴Sn=(n-)•3n+, 又S1=3满足上式, 综上,Sn=(n-)•3n+,n∈N*. |