已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=2n•(an+2),求数列{b

已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=2n•(an+2),求数列{b

题型:不详难度:来源:
已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2
n•(an+2)
,求数列{bn}的前n项和Sn
答案
(Ⅰ)设数列{an}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得
(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,
当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.
∴d=2,
∴an=a1+(n-1)d=2+2(n-1)=2n.
即数列{an}的通项公式an=2n;
(Ⅱ)由an=2n,得
bn=
2
n•(an+2)
=
2
n(2n+2)
=
1
n(n+1)
=
1
n
-
1
n+1

∴Sn=b1+b2+b3+…+bn
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
=
n
n+1
举一反三
已知数列{an}的前n项和Sn=2n2-3n,而a1,a3,a5,a7,组成一新数列{bn},则数列{bn}的前n项和为
(  )
A.Tn=2n2-nB.Tn=4n2+3nC.Tn=2n2-3nD.Tn=4n2-5n
题型:不详难度:| 查看答案
设数列{an}的前n项和为Sn,且Sn=4an+2n+1,n∈N*
(1)求证:{an-2}是等比数列;
(2)求数列{nan}前n项和Tn
题型:不详难度:| 查看答案
根据程序框图,将输出的x,y值依次分别记为x1,x2,…,x2013;y1,y2,…,y2013
(Ⅰ)写出数列{xn}的递推公式,求{xn}的通项公式;
(Ⅱ)写出数列{yn}的递推公式,求{yn}的通项公式;
(Ⅲ)求数列{xn+yn}的前n项和Sn(n≤2013).
题型:不详难度:| 查看答案
递增的等比数列{an}的前n项和为Sn,且S2=6,S4=30
(I)求数列{an}的通项公式.
(II)若bn=anlog
1
2
an
,数列{bn}的前n项和为Tn,求Tn+n•2n+1>50成立的最小正整数n的值.
题型:不详难度:| 查看答案
在等比数列{an}中,已知a2=2,a5=16.
(Ⅰ)求数列{an}的通项an
(Ⅱ)在等差数列{bn}中,若b1=a5,b8=a2,求数列{bn}前n项和Sn
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.