设M=1210+1210+1+1210+2+…+1211-1,则(  )A.M=1B.M<1C.M>1D.M与1的大小关系不确定

设M=1210+1210+1+1210+2+…+1211-1,则(  )A.M=1B.M<1C.M>1D.M与1的大小关系不确定

题型:不详难度:来源:
M=
1
210
+
1
210+1
+
1
210+2
+…+
1
211-1
,则(  )
A.M=1B.M<1
C.M>1D.M与1的大小关系不确定
答案
由已知,M=
1
210
+
1
210+1
+
1
210+2
+…+
1
211-1
1
210
× 1024
=1
故本题应选B.
举一反三
已知数列{an}满足an+1=a1-an-1(n≥2),a1=a,a2=b,设Sn=a1+a2+…+an,则下列结论正确的是(  )
A.a100=a-b,S100=50(a-b)B.a100=a-b,S100=50a
C.a100=-b,S100=50aD.a100=-a,S100=b-a
题型:襄阳模拟难度:| 查看答案
i表示虚数单位,则i1+i2+i3+…+i2012的值是______.
题型:不详难度:| 查看答案
设等差数列{an}的前n项和为Sn,且S4=48,a2+a5=20.
(1)求数列{an}的通项公式;
(2)设bn=(17-an)•2n-1,求数列{bn}的前n项和Tn
题型:不详难度:| 查看答案
已知:数列{an}是等差数列,{bn}是等比数列,cn=an-bn,c1=0,c2=
1
6
c3=
2
9
c4=
7
54

(1)求数列{an},{bn}的通项公式;
(2)求和:a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1
题型:不详难度:| 查看答案
已知等差数列{an} 中,a3=7,a1+a2+a3=12,令bn=an•an+1,数列{
1
bn
}的前n项和为Tn
(1)求数列{an}的通项公式;
(2)求证:Tn
1
3

(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.