对于任意n∈N*,抛物线y=(n2+n)x2-(2n+1)x+1与x轴交于An,Bn两点,以|AnBn|表示该两点的距离,则|A1B1|+|A2B2|+…+|A

对于任意n∈N*,抛物线y=(n2+n)x2-(2n+1)x+1与x轴交于An,Bn两点,以|AnBn|表示该两点的距离,则|A1B1|+|A2B2|+…+|A

题型:柳州三模难度:来源:
对于任意n∈N*,抛物线y=(n2+n)x2-(2n+1)x+1与x轴交于An,Bn两点,以|AnBn|表示该两点的距离,则|A1B1|+|A2B2|+…+|A1999B1999|的值是(  )
A.
1998
1999
B.
2000
1999
C.
1998
2000
D.
1999
2000
答案
y=(n2+n)x2-(2n+1)x+1=[x-
1
n
][x-
1
n+1
]
令y=0,则x=
1
n
1
n+1

∴|AnBn|=
1
n
-
1
n+1

∴|A1B1|+|A2B2|+…+|A1999B1999|=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
1999
-
1
2000

=(1-
1
2
+
1
2
-
1
3
)+…+(
1
1999
-
1
2000
1
2000

=1-
1
2000
=
1999
2000

故选D
举一反三
给定有限单调递增数列{xn}(n∈N*,n≥2)且xi≠0(1≤i≤n),定义集合A={(xi,xj)|1≤i,j≤n,且i,j∈N*}.若对任意点A1∈A,存在点A2∈A使得OA1⊥OA2(O为坐标原点),则称数列{xn}具有性质P.
(Ⅰ)判断数列{xn}:-2,2和数列{yn}:-2,-1,1,3是否具有性质P,简述理由.
(Ⅱ)若数列{xn}具有性质P,求证:
①数列{xn}中一定存在两项xi,xj使得xi+xj=0;
②若x1=-1,x2>0且xn>1,则x2=1.
(Ⅲ)若数列{xn}只有2013项且具有性质P,x1=-1,x3=2,求{xn}的所有项和S2013
题型:石景山区一模难度:| 查看答案
已知数列{an}的前n项和为Sn,且点(n,Sn)在函数y=2x-1-2的图象上.
(I)求数列{an}的通项公式;
(II)设数列{bn}满足:b1=0,bn+1+bn=an,求数列{bn}的前n项和公式;
(III)在第(II)问的条件下,若对于任意的n∈N*不等式bn<λbn+1恒成立,求实数h(-1)=-
1
3
的取值范围.
题型:顺义区一模难度:| 查看答案
已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )
A.1-4nB.4n-1C.
1-4n
3
D.
4n-1
3
题型:顺义区二模难度:| 查看答案
已知各项都不为零的数列{an}的前n项和为Sn,且Sn=
1
2
anan+1(n∈N*)
,a1=1.
(1)求数列{an}的通项公式;
(2)求证:
1
a12
+
1
a22
+
1
a32
+…+
1
an2
7
4
题型:潮州二模难度:| 查看答案
设Sn为数列{an}前n项和,对任意的n∈N*,都有Sn=2-an,数列{bn}满足bn=
bn-1
1+bn-1
,b1=2a1
(1)求证:数列{an}是等比数列,并求{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)求数列{
1
an+2bn
}
的前n项和Tn
题型:东莞二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.