已知函数y=f(x)满足a=(x2,y),b=(x-1x,-1),且a•b=-1.如果存在正项数列{an}满足:a1=12, f(a1)+f(a2)+f(a3)

已知函数y=f(x)满足a=(x2,y),b=(x-1x,-1),且a•b=-1.如果存在正项数列{an}满足:a1=12, f(a1)+f(a2)+f(a3)

题型:不详难度:来源:
已知函数y=f(x)满足


a
=(x2,y),


b
=(x-
1
x
,-1)
,且


a


b
=-1

如果存在正项数列{an}满足:a1=
1
2
 f(a1)+f(a2)+f(a3)+…+f(an)-n
=a13+a23+a33+…+an3-n2an(n∈N*).
(1)求数列{an}的通项;
(2)求证:
a1
1
+
a2
2
+
a3
3
+…+
an
n
<1

(3)求证:


a1
1
+


a2
2
+


a3
3
+…+


an
n
<1+


2
答案
(1)


a


b
=-1
,∴y=f(x)=x3-x+1(x≠0)
∵f(a1)+f(a2)+f(a3)+…+f(an)-n=a13+a23+a33+…+an3-n2an(n∈N*).
所以代入得a1+a2+a3+…+an=n2an
又a1+a2+a3+…+an-1=(n-1)2an-1(n≥2)②
①-②得 
an
an-1
=
n-1
n+1
an=
an
an-1
an-1
an-2
•…•
a2
a1
=
1
n(n+1)
(n∈N*)
…(4分)
(2)由(1)得
ai
i
=
1
i2(i+1)
=
1
i
(
1
i
-
1
i+1
)=
1
i2
-(
1
i
-
1
i+1
)
1
i(i-1)
-(
1
i
-
1
i+1
)
=(
1
i-1
-
1
i
)+(
1
i
-
1
i+1
)(i>1)

a1
1
+
a2
2
+
a3
3
+…+
an
n
1
2
+
1
2
-(
1
n
-
1
n+1
)=1+
1
n+1
-
1
n
=1-
1
n(n+1)
<1
…(9分)
(3)∵


i+1
+


i-1
2


(i+1)+(i-1)
2
=


i
1


i
2


i+1
+


i-1



ai
i
=


1
i2(i+1)


1
(i-1)i(i+1)
1


i-1


i+1
2


i-1
+


i+1
=
1


i-1
-
1


i+1
(i≥2)

所以


a1
1
+


a2
2
+


a3
3
+…+


an
n


a1
1
+(
1


1
-
1


3
)+(
1


2
-
1


4
)+…+
(
1


n-1
-
1


n+1
)<
1


2
+1+
1


2
-
1


n
-
1


n+1
<1+


2
…(14分)
举一反三
数列9,99,999,…的前n项和为(  )
A.
10
9
(10n-1)+n
B.10n-1C.
10
9
(10n-1)
D.
10
9
(10n-1)-n
题型:不详难度:| 查看答案
数列1,
1
1+2
1
1+2+3
,…的前n项和Sn=______.
题型:不详难度:| 查看答案
若Sn=1-2+3-4+…+(-1)n-1•n,S17+S33+S50等于______.
题型:不详难度:| 查看答案
已知数列an=1+
1
2
+
1
3
+…+
1
n
,记Sn=a1+a2+a3+…+an,用数学归纳法证明Sn=(n+1)an-n.
题型:不详难度:| 查看答案
1+3+5+…+(2x-1)
1
1•2
+
1
2•3
+…+
1
x(x+1)
=110(x∈N+),则x=______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.