已知函数f(x)=4x+1,g(x)=2x,x∈R,数列{an},{bn},{cn}满足条件:a1=1,an=f(bn)=g(bn+1)(n∈N*),cn=1[

已知函数f(x)=4x+1,g(x)=2x,x∈R,数列{an},{bn},{cn}满足条件:a1=1,an=f(bn)=g(bn+1)(n∈N*),cn=1[

题型:崇文区一模难度:来源:
已知函数f(x)=4x+1,g(x)=2x,x∈R,数列{an},{bn},{cn}满足条件:a1=1,an=f(bn)=g(bn+1)(n∈N*),cn=
1
[
1
2
f(n)+
1
2
][g(n)+3]

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{cn}的前n项和Tn,并求使得Tn
m
150
对任意n∈N*都成立的最大正整数m;
(Ⅲ)求证:
a1
a2
+
a2
a3
+…+
an
an+1
n
2
-
1
3
答案
(Ⅰ)由题意an+1=4bn+1+1,an=2bn+1
∴an+1=2an+1,(2分)
∴an+1+1=2(an+1),
∵a1=1,
∴数列{an+1}是首项为2,公比为2的等比数列.(4分)
∴.an+1=2×2n-1
∴an=2n-1.(5分)
(Ⅱ)∵cn=
1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
)
,(7分)
Tn=
1
2
(
1
3
-
1
5
+
1
5
-
1
7
++
1
2n+1
-
1
2n+3
)
=
1
2
(
1
3
-
1
2n+3
)=
n
3×(2n+3)
=
n
6n+9
.(8分)
Tn+1
Tn
=
n+1
6n+15
6n+9
n
=
6n2+15n+9
6n2+15n
>1

∴Tn<Tn+1,n∈N*
∴当n=1时,Tn取得最小值
1
15
.(10分)
由题意得
1
15
m
150
,得m<10.
∵m∈Z,
∴由题意得m=9.(11分)
(Ⅲ)证明:
ak
ak+1
=
2k-1
2k+1-1
=
1
2
-
1
2(2k+1-1)
=
1
2
-
1
2k+2k-2
1
2
-
1
3
1
2k

k=1,2,3,,n(12分)
a1
a2
+
a2
a3
++
an
an+1
n
2
-
1
3
(
1
2
+
1
22
++
1
2n
)=
n
2
-
1
3
(1-
1
2n
)

a1
a2
+
a2
a3
++
an
an+1
n
2
-
1
3
(n∈N*).(14分)
举一反三
已知a1=1,a2=4,an+2=4an+1+anbn=
an+1
an
,n∈N*

(Ⅰ)求b1,b2,b3的值;
(Ⅱ)设cn=bnbn+1,Sn为数列{cn}的前n项和,求证:Sn≥17n;
(Ⅲ)求证:|b2n-bn|<
1
64
1
17n-2
题型:重庆难度:| 查看答案
已知一次函数f(x)的图象关于直线y=x对称的图象为C,且f[f(1)]=-1,若点(n,
an+1
an
)(n∈N+)
在曲线C上,并有a1=1,
an+1
an
-
an
an-1
=1(n≥2)

(1)求f(x)的解析式及曲线C的方程;
(2)求数列{an}的通项公式;
(3)设bn=
an
(n+2)!
,求证:数列{bn}的前n项和Sn
1
2
题型:江西模拟难度:| 查看答案
已知数列{an}中各项为:12、1122、111222、
11…1





个n
22…2





n个

(1)证明这个数列中的每一项都是两个相邻整数的积.
(2)求这个数列前n项之和Sn
题型:不详难度:| 查看答案
各项都为正数的数列{an}满足a1=1,an+12-an2=2.
(1)求数列{an}的通项公式;
(2)求数列{
1
an+an+1
}
的前n项和.
题型:石家庄二模难度:| 查看答案
已知数列{an}对于任意的p、q∈N*,满足ap+q=ap+aq且a2=2,则
1
a1a2
+
1
a2a3
+…+
1
a2008a2009
=______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.