解(1)∵ Sn+1-Sn得2an+1=(n+1)an+1-nan+1(12分) 即(n-1)an+1=nan-1③ ∴nan+2=(n+1)an+1-1④(4分) ④-③得nan+2-(n-1)an+1=(n+1)an+1-nan ⇒n(an+2+an)=2nan+1 ∴an+2-an+1=an+1-an=an-an-1═a2-a1(6分) 而n=1时S1==a1, ∴a1=1,又a2=a=a1+d ∴{an} 为等差数列,公式d=a-1 故an=a1+(n-1)d=(n-1)(a-1)+1;(8分) (2)∵a=3 ∴an=2(n-1)+1=2n-1(10分) 故T100=a1a2-a2a3+a100a101 =a2(a1-a3)+a4(a3-a5)++a100(a99-a101) =-4(a2+a4++a100) =-4=-100(3+199)=-20200(13分) |