数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)令cn=(3n+1)•an2(n∈N*),求数列{cn}的

数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)令cn=(3n+1)•an2(n∈N*),求数列{cn}的

题型:不详难度:来源:
数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令cn=
(3n+1)•an
2
(n∈N*),求数列{cn}的前n项和Tn
答案
(Ⅰ)当n=1时,a1=S1=2,
当n≥2时,an=Sn-Sn-1=n(n+1)-(n-1)n=2n,知a1=2满足该式
∴数列{an}的通项公式为an=2n…(5分)
(Ⅱ)cn=n(3n+1)=n•3n+n,
∴Tn=c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)…(7分)
令Hn=1×3+2×32+3×33+…+n×3n,①
则3Hn=1×32+2×33+3×34+…+n×3n+1②…(9分)
①-②得,-2Hn=3+32+33+…+3n-n×3n+1=
3(1-3n)
1-3
-n×3n+1
∴Hn=
(2n-1)×3n+1+3
4
,…(11分)
∴数列{cn}的前n项和Tn=
(2n-1)×3n+1+3
4
+
n(n+1)
2
…(12分)
举一反三
数列{an}满足:an+2=an+1-an(n∈N*),且a2=1,若数列的前2012项之和为2013,则前2013项的和等于______.
题型:不详难度:| 查看答案
数列{an}是首项为0的等差数列,数列{bn}是首项为1的等比数列,设cn=an+bn,数列{cn}的前三项依次为1,1,2.
(1)求数列{an},{bn}的通项公式.
(2)求数列{cn}的前n项的和.
题型:不详难度:| 查看答案
函数f(x)=x3,在等差数列{an}中,a3=7,a1+a2+a3=12,记Sn=f(
3an+1

)
,令bn=anSn,数列{bn}的前n项和为Tn
(1)求{an}的通项公式和Sn
(2)求证Tn
1
3
题型:不详难度:| 查看答案
设数列{an}的前n项和为Sn,且a1=1,Sn=nan-2n(n-1)(n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:
1
a1a2
+
1
a2a3
+…+
1
an-1an
1
4
题型:不详难度:| 查看答案
已知等差数列{an}的前n项和为Sn,且a3=5,S15=225;等比数列{bn}满足:b3=a2+a3,b2b5=128
(1)求数列{an}和{bn}的通项公式
(2)记cn=an+bn求数列{cn}的前n项和为Tn
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.