已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N+)数列{bn}的前n项和为Sn,其中b1=-32,bn+1=-23Sn(n∈N+).

已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N+)数列{bn}的前n项和为Sn,其中b1=-32,bn+1=-23Sn(n∈N+).

题型:不详难度:来源:
已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N+)数列{bn}的前n项和为Sn,其中b1=-
3
2
bn+1=-
2
3
Sn(n∈N+).

(1)求数列{an}和{bn}的通项公式;
(2)若Tn=
a1
b1
+
a2
b2
+…+
an
bn
,求Tn
的表达式.
答案
(1)∵2an+1=an+2+an∴数列{an}是等差数列,(1分)
∴公差d=a2-a1=2∴an=2n-1 (3分)
∵bn+1=-
2
3
Sn∴bn=-
2
3
Sn-1(n≥2)
bn+1-bn=-
2
3
bn,∴bn+1
1
3
bn

又∵b2=-
2
3
S1=1
b2
b1
=-
2
3
1
3

∴数列{bn}从第二项开始是等比数列,
bn=





-
3
2
,(n=1)
(
1
3
)n-2,(n≥2)
(6分)
(2)∵n≥2时
an
bn
=(2n-1)•3n-2
(7分)∴Tn=
a1
b1
+
a2
b2
++
an
bn
=-
2
3
+3×30+5×31+7×32++(2n-1)×3n-2

∴3Tn=-2+3×31+5×32+7×33++(2n-1)×3n-1(10分)
错位相减并整理得Tn=-
2
3
+(n-1)×3n-1
.(12分)
举一反三
等比数列{an}为递增数列,且a4=
2
3
a3+a5=
20
9
,数列bn=log3
an
2
(n∈N*
(1)求数列{bn}的前n项和Sn及其最小值;
(2)若Tn=b1+b2+b22+…+b2n-1,求Tn的最小值.
题型:不详难度:| 查看答案
数列{an}的通项公式是an=
1
n(n+1)
(n∈N*),若前n项的和为
10
11
,则项数为______.
题型:不详难度:| 查看答案
若数列{an}的项构成的新数列{an+1-Kan}是公比为l的等比数列,则相应的数列{an+1-1an}是公比为k的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此法为双等比数列法.已知数列{an}中,a1=
3
5
a2=
31
100
,且an+1=
1
10
an+
1
2n+1

(1)试利用双等比数列法求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
题型:不详难度:| 查看答案
数列{an}的通项公式是an=2n+n-1,则其前8项和S8等于______.
题型:不详难度:| 查看答案
已知数列{an}的首项a1=
3
5
an+1=
3an
2an+1
,其中n∈N+
(Ⅰ)求证:数列{
1
an
-1
}为等比数列;
(Ⅱ)记Sn=
1
a1
+
1
a2
+…+
1
an
,若Sn<100,求最大的正整数n.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.