(1)由于x≥1,y≥1, 要证x+y+≤++xy, 只需证xy(x+y)+1≤y+x+(xy)2. 因为[y+x+(xy)2]-[xy(x+y)+1] =[(xy)2-1]-[xy(x+y)-(x+y)] =(xy+1)(xy-1)-(x+y)(xy-1) =(xy-1)(xy-x-y+1) =(xy-1)(x-1)(y-1). 由条件x≥1,y≥1,得(xy-1)(x-1)(y-1)≥0, 从而所要证明的不等式成立. (2)设logab=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy. 于是,所要证明的不等式即为x+y+≤++xy. 其中x=logab≥1,y=logbc≥1. 故由(1)可知所要证明的不等式成立. |