已知集合A={x|x2-2ax-8a2<0},B={x|x2-5x=m2(x-1)-4,m∈R}.(Ⅰ)若A=(x1,x2)且x2-x1=15,求实数a的值;(
题型:不详难度:来源:
已知集合A={x|x2-2ax-8a2<0},B={x|x2-5x=m2(x-1)-4,m∈R}. (Ⅰ)若A=(x1,x2)且x2-x1=15,求实数a的值; (Ⅱ)若存在实数m使得B⊆A,求实数a范围. |
答案
(I)A=(x1,x2),即A={x|x2-2ax-8a2<0}=(x1,x2),可知x1,x2是方程x2-2ax-8a2=0的两根, 又方程x2-2ax-8a2=0的两根为-2a和4a, ∴由x2-x1=15,可得|-2a-4a|=15,解得a=±; (II)B={x|x2-5x=m2(x-1)-4,m∈R}={m2+4,1}, 由(Ⅰ)知,①当a>0时,-2a<4a,A=(-2a,4a), 由B⊆A,得(*), 又m2+4≥4,∴(*)式等价于,解得a>1; ②当a<0时,4a<-2a,A=(4a,-2a), 由B⊆A,得(**), 又m2+4≥4,∴(**)式等价于,解得a<-2; 综上,实数a的取值范围是:(-∞,-2)∪(1,+∞). |
举一反三
已知集合A={x|x2+3x+2<0}若B={x|x2-4ax+3a2<0},A⊆B,求实数a的取值范围. |
不等式ax2+bx-2≥0的解集为{x|-2≤x≤-},则实数a,b的值为( )A.a=-8,b=-10 | B.a=-1,b=9 | C.a=-4,b=-9 | D.a=-1,b=2 |
|
已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=( )A.(-∞,-1) | B.(-1,-) | C.﹙-,3﹚ | D.(3,+∞) |
|
不等式2x2+mx+n>0的解集是{x|x>3或x<-2},则二次函数y=2x2+mx+n的表达式是( )A.y=2x2+2x+12 | B.y=2x2-2x+12 | C.y=2x2+2x-12 | D.y=2x2-2x-12 |
|
若16-x2≥0,则( )A.0≤x≤4 | B.-4≤x≤0 | C.-4≤x≤4 | D.x≤-4或x≥4 |
|
最新试题
热门考点