定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)

定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)

题型:不详难度:来源:
定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是(  )
A.f(x1)<f(x2)B.f(x1)=f(x2)
C.f(x1)>f(x2)D.不确定

答案
C
解析
由题可知函数y=f(x)的图象关于直线x=1对称,且在(1,+∞)上是减函数,由x1<x2且x1+x2>2,可知x2>1,x2>2-x1.若2-x1>1,则f(x2)<f(2-x1)=f(x1);若2-x1<1,即x1>1,此时x1<x2可得f(x1)>f(x2);若x1=1,根据函数性质,当x=1时函数取得最大值,也有f(x1)>f(x2).故选C.
举一反三
如图,函数g(x)=f(x)+x2的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.

题型:不详难度:| 查看答案
经过原点且与曲线y=相切的方程是(  )
A.x+y=0或+y=0B.x-y=0或+y=0
C.x+y=0或-y=0D.x-y=0或-y=0

题型:不详难度:| 查看答案
记定义在R上的函数y=f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x3-3x在区间[-2,2]上“中值点”的个数为________.
题型:不详难度:| 查看答案
已知函数y=f(x)的导函数为f′(x)=5+cosx,且f(0)=0,如果f(1-x)+f(1-x2)<0,则实数x的取值范围是________.
题型:不详难度:| 查看答案
已知函数f(x)=sinx,g(x)=mx- (m为实数).
(1)求曲线y=f(x)在点P(),f()处的切线方程;
(2)求函数g(x)的单调递减区间;
(3)若m=1,证明:当x>0时,f(x)<g(x)+.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.