若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-.(1)求函数的解析式.(2)若方程f(x)=k有3个不同的根,求实数k的取值范围.

若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-.(1)求函数的解析式.(2)若方程f(x)=k有3个不同的根,求实数k的取值范围.

题型:不详难度:来源:
若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-.
(1)求函数的解析式.
(2)若方程f(x)=k有3个不同的根,求实数k的取值范围.
答案
(1) f(x)=x3-4x+4.(2)-<k<.
解析

试题分析:f′(x)=3ax2-b.
(1)由题意得解得
故所求函数的解析式为f(x)=x3-4x+4.
(2)由(1)可得f′(x)=x2-4=(x-2)(x+2),
令f′(x)=0,得x=2或x=-2.
当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
f′(x)

0

0

f(x)





因此,当x=-2时,f(x)有极大值
当x=2时,f(x)有极小值-
所以函数f(x)=x3-4x+4的图象大致如图所示.

若f(x)=k有3个不同的根,则直线y=k与函数f(x)的图象有3个交点,所以-<k<.
点评:中档题,利用导数研究函数的单调性、极值、最值,是导数的应用中的基本问题。本题(II)应用导数,通过研究函数的单调性、极值等,对函数的图象有了充分的了解,明确了函数零点情况。
举一反三
曲线在点处的切线与x轴交点的横坐标为an
(1)求an
(2)设,求数到的前n项和Sn
题型:不详难度:| 查看答案
已知函数有极大值和极小值,则实数的取值范围是
A.B.
C.D.

题型:不详难度:| 查看答案
已知函数 (R).
(1) 若,求函数的极值;
(2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。
题型:不详难度:| 查看答案
在平面直角坐标系中,点P在曲线上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为        
题型:不详难度:| 查看答案
已知函数的图像在点处的切线方程为.
(Ⅰ)求实数的值;
(Ⅱ)设是[)上的增函数, 求实数的最大值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.