已知函数,其中是常数.(1)当时,求曲线在点处的切线方程;(2)若存在实数,使得关于的方程在上有两个不相等的实数根,求的取值范围.

已知函数,其中是常数.(1)当时,求曲线在点处的切线方程;(2)若存在实数,使得关于的方程在上有两个不相等的实数根,求的取值范围.

题型:不详难度:来源:
已知函数,其中是常数.
(1)当时,求曲线在点处的切线方程;
(2)若存在实数,使得关于的方程上有两个不相等的实数根,求的取值范围.
答案
(1)曲线在点处的切线方程为
(2)要使方程上有两个不相等的实数根,的取值范围必须是.
解析
解:(1)由可得
.         
时, ,.        
所以 曲线在点处的切线方程为
.                        
(2) 令
解得.               
,即时,在区间上,,所以上的增函数.
所以 方程上不可能有两个不相等的实数根.
,即时,的变化情况如下表















 
由上表可知函数上的最小值为.
因为 函数上的减函数,是上的增函数,
且当时,有.
所以 要使方程上有两个不相等的实数根,的取值范围必须是
.
举一反三
曲线上两点,若曲线上一点处的切线恰好平行于弦,则点的坐标为(  )
A.(1,3)B.(3,3)C.(6,-12)D.(2,4)

题型:不详难度:| 查看答案
已知函数f(x)的定义域为[-1,5],部分对应值如表:
x
-1
0
4
5
f(x)
1
2
2
1
 
f(x)的导函数y=f"(x)的图象如图所示:

下列关于f(x)的命题:
①函数f(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点;
⑤函数y=f(x)-a的零点个数可能为0, 1,2,3,4个.
其中正确命题的序号是     
题型:不详难度:| 查看答案
已知A、B、C是直线l上不同的三点,O是l外一点,向量满足:记y=f(x).
(1)求函数y=f(x)的解析式:
(2)若对任意不等式恒成立,求实数a的取值范围:
(3)若关于x的方程f(x)=2x+b在(0,1]上恰有两个不同的实根,求实数b的取值范围.
题型:不详难度:| 查看答案
直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值为(  )
A.2B.-1C.1D.-2

题型:不详难度:| 查看答案
(2014·哈尔滨模拟)已知函数f(x)=x2+,g(x)=-m.若∀x1∈[1,2],∃x2∈[-1,1]使f(x1)≥g(x2),则实数m的取值范围是__________.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.