已知.(1)若存在单调递减区间,求实数的取值范围;(2)若,求证:当时,恒成立;(3)设,证明:.

已知.(1)若存在单调递减区间,求实数的取值范围;(2)若,求证:当时,恒成立;(3)设,证明:.

题型:不详难度:来源:
已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)设,证明:.
答案
(1);(2)证明过程详见试题解析;(3)证明过程详见试题解析.
解析

试题分析:(1)当时,. ∵ 有单调减区间,∴有解.分两种情况讨论有解.可得到的取值范围是;(2)此问就是要证明函数上的最大值小于或等于,经过求导讨论单调性得出当时,有最大值,命题得证;(3)利用(2)的结论,将此问的不等关系,转化成与(2)对应的函数关系进行证明.
试题解析:(1)当时,

有单调减区间,∴有解,即
,∴ 有解.
(ⅰ)当时符合题意;
(ⅱ)当时,△,即
的取值范围是.
(2)证明:当时,设
.

讨论的正负得下表:
 
∴当有最大值0.
恒成立.
∴当时,恒成立.
(3)证明:∵

 

 
由(2)有
.
举一反三
已知函数图象与轴异于原点的交点M处的切线为轴的交点N处的切线为, 并且平行.
(1)求的值;
(2)已知实数t∈R,求的取值范围及函数的最小值;
(3)令,给定,对于两个大于1的正数,存在实数满足:,并且使得不等式恒成立,求实数的取值范围.
题型:不详难度:| 查看答案
若函数上为增函数(为常数),则称为区间上的“一阶比增函数”,的一阶比增区间.
(1) 若上的“一阶比增函数”,求实数的取值范围;
(2) 若  (为常数),且有唯一的零点,求的“一阶比增区间”;
(3)若上的“一阶比增函数”,求证:
题型:不详难度:| 查看答案
,则的解集为________.
题型:不详难度:| 查看答案
设函数
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
题型:不详难度:| 查看答案
定义在R上的函数f(x)满足f(1)=1且对一切x∈R都有f′(x)<4,则不等式f(x)>4x-3的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.