设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”.(1) 类比“上夹线

设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”.(1) 类比“上夹线

题型:不详难度:来源:
设直线. 若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意xR都有. 则称直线l为曲线S的“上夹线”.
(1) 类比“上夹线”的定义,给出“下夹线”的定义;
(2) 已知函数取得极小值,求ab的值;
(3) 证明:直线是(2)中曲线的“上夹线”。
答案
(1)设直线. 若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意xR都有. 则称直线l为曲线S的“下夹线”.
(2)(3)见解析
解析
(1) 设直线. 若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意xR都有. 则称直线l为曲线S的“下夹线”. ----------3分
(2)因为,所以               -----4分
        --------5分
解得,                   -----------6分
(3)由(2)得

时,,此时
,所以是直线与曲线的一个切点;     ……8分
时,,此时
,所以是直线与曲线的一个切点;        ----10分
所以直线l与曲线S相切且至少有两个切点;
对任意xR
所以                       -----------12分
因此直线是曲线的“上夹线”.     ------13分
举一反三
已知
(1)若的取值范围;
(2)若的图象与的图象恰有3个交点?若存在求出的取值范围;若不存在,试说明理由.
题型:不详难度:| 查看答案
已知函数
(1)求
(2)令
求证:
题型:不详难度:| 查看答案
已知函数的图象过点,且它在处的切线方程为.
(1) 求函数的解析式;
(2) 若对任意,不等式恒成立,求实数的取值范围.
题型:不详难度:| 查看答案
设a为正实数,函数f(x)=x3-ax2-a2x+1, x∈R.
(1)求f(x)的极值;
(2)设曲线y=f(x)与直线y=0至多有两个公共点,求实数a的取值范围.
题型:不详难度:| 查看答案
(本小题满分12分)
已知函数,其中
(1)当满足什么条件时,取得极值?
(2)已知,且在区间上单调递增,试用表示出的取值范围。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.