(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。定义:对函数,对给定的正整数,若在其定义域内存在实数,使得,则称函数为

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。定义:对函数,对给定的正整数,若在其定义域内存在实数,使得,则称函数为

题型:不详难度:来源:
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
定义:对函数,对给定的正整数,若在其定义域内存在实数,使得,则称函数为“性质函数”。
(1)判断函数是否为“性质函数”?说明理由;
(2)若函数为“2性质函数”,求实数的取值范围;
(3)已知函数的图像有公共点,求证:为“1性质函数”。
答案
(1)不能为“k性质函数”
(2)
(3)见解析
解析
(1)根据“性质函数”的概念,列出方程,利用判别式法判断即可;(2)根据“2性质函数”的概念,列出方程,利用判别式列出关于a的不等式,再利用不等式知识求解即可;(3)由已知条件构造方程,最后化为满足“1性质函数”的方程即可证明函数成立
解:
(1)若存在满足条件,则,………………….   2分
方程无实数根,与假设矛盾。不能为
“k性质函数”。                    …………………………….   4分
(2)由条件得:,………………….  5分
,化简得
,…………………………….    7分
时,;…………………………….    8分
时,由


综上,。……………………………. 10分
(3)由条件存在使,即。…………………….11分
,,

……………………………. 12分
,…………………………….    14分

,……………………….   15分
,为“1性质函数”。……….   16分
举一反三
已知函数f(x)= x/4+ln(x-2)/(x-4),(1)求函数f)x)的定义域和极值;(2)若函数(fx)在区间[a2-5a,8-3a]上为增函数,求实数a的取值范围;(3)函数f(x)的图象是否为中心对称图形?若是请指出对称中心,并证明;若不是,请说明理由.
题型:不详难度:| 查看答案
如图所示,是定义在区间)上的奇函数,令,并有关于函数的四个论断:

①若,对于内的任意实数),恒成立;
②函数是奇函数的充要条件是
③若,则方程必有3个实数根;
的导函数有两个零点;
其中所有正确结论的序号是(    ).
A.①②B.①②③
C.①④D.②③④

题型:不详难度:| 查看答案
(本小题满分14分) 设函数.
(Ⅰ)当时,求函数的单调区间和极大值点;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.
题型:不详难度:| 查看答案
(本小题满分14分) 设函数.
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)当时,若函数上是增函数,求的取值范围;
(Ⅲ)若,不等式对任意恒成立,求整数的最大值.
题型:不详难度:| 查看答案
(本小题满分14分)规定其中x∈R,m为正整数,且=1,这是排列数A(nm是正整数,且mn)的一种推广.
(1)求A的值; (2)确定函数的单调区间.
(3) 若关于的方程只有一个实数根, 求的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.