已知f(x)=ax2(a∈R),g(x)=2lnx.(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)是否存在这样的a的值,使得f(x)≥g(x)+2(

已知f(x)=ax2(a∈R),g(x)=2lnx.(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)是否存在这样的a的值,使得f(x)≥g(x)+2(

题型:不详难度:来源:
已知f(x)=ax2(a∈R),g(x)=2lnx.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)是否存在这样的a的值,使得f(x)≥g(x)+2(x∈R*)恒成立,若不存在,请说明理由;若存在,求出所有这样的值.
答案
(1)∵f(x)=ax2(a∈R),g(x)=2lnx.
函数F(x)=f(x)-g(x),
∴F(x)=ax2-2lnx,
其定义域为(0,+∞)(1分)
F′(x)=2ax-
2
x
=
2(ax2-1)
x
(x>0)

(i)当a>0时,由ax2-1>0得x>
1


a
.由ax2-1<0得0<x<
1


a

故当a>0时,F(x)的递增区间为(
1


a
,+∞),递减区间为(0,
1


a
)
.(4分)
(ii)当a<0时,F"(x)<0(x>0)恒成立
故当a≤0时,F(x)在(0,+∞)上单调递减.(6分)
(2)即使F(x)≥2在x>0时恒成立.
由(1)可知当a≤0时,x→+∞,
则F(x)→-∞.F(x)≥2在x>0时不可能恒成立.(7分)
∴a>0,由(1)可知
Fmin(x)=F(
1


a
)=1-2ln
1


a
=1-ln
1
a
(10分)
只须1-ln
1
a
≥2
即可,
∴lna≥1,
∴a≥e,
故存在这样的a的值,
使得f(x)≥g(x)+2(x∈R+)恒成立.
a的取值范围为[e,+∞).(12分)
举一反三
已知函数f(x)=
mx
x2+n
(m,n∈R)在x=1处取得极值2.
(I)求f(x)的解析式;
(II)设函数g(x)=x2-2ax+a,若对于任意的x1∈R,总存在x2∈[-1,1],使得g(x2)≤f(x1),求实数a的取值范围.
题型:三亚模拟难度:| 查看答案
函数f(x)=xsinx+cosx+1(x∈[0,π]的最大值为(  )
A.
π
2
+1
B.2C.1D.0
题型:安徽模拟难度:| 查看答案
已知 f(x)=ax-lnx,g(x)=
lnx
x
,其中x∈(0,e](e是自然常数),a∈R
(Ⅰ)当a=1时,求f(x)的单调性、极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+
1
2
;   
(Ⅲ)是否存在a∈R,使f(x)的最小值是3,若存在求出a的值,若不存在,说明理由.
题型:广东模拟难度:| 查看答案
已知函数f(x)=
1
2
x2+3lnx+(a-6)x
在[3,+∞)上是增函数,
(1)求实数a的取值范围;
(2)在(1)的结论下,设g(x)=|ex-a|+
1
2
a2
,x∈[0,ln3],求函数g(x)的最小值.
题型:不详难度:| 查看答案
已知函数f(x)=6lnx+x2-8x,g(x)=
p
x
+x2
 (p∈R)

(1)求函数f(x)的单调递增区间;
(2)若在区间[1,e]上至少存在一点x0,使f(x0)>g(x0)成立,求实数p的取值范围.
题型:安徽模拟难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.