已知定义在正实数集上的函数f(x)=12x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.

已知定义在正实数集上的函数f(x)=12x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.

题型:湖北难度:来源:
已知定义在正实数集上的函数f(x)=
1
2
x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求证:f(x)≥g(x)  (x>0).
答案
(Ⅰ)设y=f(x)与y=g(x)(x>0)在公共点(x0,y0)处的切线相同.
∵f"(x)=x+2a,g′(x)=
3a2
x
,由题意f(x0)=g(x0),f"(x0)=g"(x0).





1
2
x20
+2ax0=3a2lnx0+b
x0+2a=
3a2
x0
x0+2a=
3a2
x0
得:x0=a,或x0=-3a(舍去).
即有b=
1
2
a2+2a2-3a2lna=
5
2
a2-3a2lna

h(t)=
5
2
t2-3t2lnt(t>0)
,则h"(t)=2t(1-3lnt).
于是当t(1-3lnt)>0,即0<t<e
1
3
时,h"(t)>0;当t(1-3lnt)<0,即t>e
1
3
时,h"(t)<0.
故h(t)在(0,e
1
3
)
为增函数,在(e
1
3
,+∞)
为减函数,
于是h(t)在(0,+∞)的最大值为h(e
1
3
)=
3
2
e
2
3

(Ⅱ)设F(x)=f(x)-g(x)=
1
2
x2+2ax-3a2lnx-b(x>0)

则F"(x)=x+2a-
3a2
x
=
(x-a)(x+3a)
x
(x>0)

故F(x)在(0,a)为减函数,在(a,+∞)为增函数,
于是函数F(x)在(0,+∞)上的最小值是F(a)=F(x0)=f(x0)-g(x0)=0.
故当x>0时,有f(x)-g(x)≥0,即当x>0时,f(x)≥g(x).
举一反三
已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于(  )
A.11或18B.11C.18D.17或18
题型:不详难度:| 查看答案
已知函数f(x)=lnx-2x
(1)求函数f(x)的单调区间;
(2)求函数f(x)在点(1,f(1))处的切线方程.
题型:广州二模难度:| 查看答案
设奇函数f(x)=ax3+bx2+cx+d的图象在P(1,f(1))处的切线的斜率为-6.且x=2时,f(x)取得极值.
(1)求实数a、b、c、d的值;
(2)设函数f(x)的导函数为f"(x),函数g(x)的导函数g′(x)=-
1
2
f′(x)+4mx-3mx2-4
,m∈(0,1),求函数g(x)的单调区间;
(3)在(2)的条件下,当x∈[m+1,m+2]时,|g"(x)|≤m恒成立,试确定m的取值范围.
题型:成都三模难度:| 查看答案
设函数f(x)=x2-2(-1)klnx(k∈N*),f(x)表示f(x)导函数.
(I)求函数f(x)的单调递增区间;
(Ⅱ)当k为偶数时,数列{an}满足a1=1,anf(an)
=a2n+1
-3
.证明:数列{
a2n
}中不存在成等差数列的三项;
(Ⅲ)当k为奇数时,设bn=
1
2
f
(n)-n
,数列{bn}的前n项和为Sn,证明不等式(1+bn)
1
bn+1
e对一切正整数n均成立,并比较S2012-1与ln2012的大小.
题型:济南三模难度:| 查看答案
已知函数f(x)=ax-
ln(1+x)
1+x
在x=0处取得极值.
(I)求实数a的值,并判断,f(x)在[0,+∞)上的单调性;
(Ⅱ)若数列{an}满足a1=1,an+1=f(an),求证:0<an+1<an≤l;
(Ⅲ)在(II)的条件.下,记sn=
a1
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)
,求证:sn<1.
题型:潍坊二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.