(1)设x1>x2≥0,则f(x1)-f(x2)=2x1+-2x2- =(2x1-2x2). 当≥x1>x2≥0时,x1+x2<1,2x1+x2<2, 2x1-2x2>0,2x1+x2>0,所以f(x1)-f(x2)<0, 即f(x1)<f(x2),所以函数f(x)在[0,]上为单调减函数; 当x1>x2≥时,x1+x2>1,2x1+x2>2, 2x1-2x2>0,2x1+x2>0,所以f(x1)-f(x2)>0, 即f(x1)>f(x2),所以函数f(x)在[,+∞)上为单调增函数.得证; (2)①当0<a≤时,由(1)知函数f(x)在[0,a]上单调递减, 所以f(x)max=f(0)=2,f(x)min=f(a)=2a+21-a-1; ②当<a≤1时,由(1)知函数f(x)在[0,]上单调递减, 在[,a]上单调递增,且f(0)=f(1), 所以f(x)max=f(0)=2,f(x)min=f()=2-1; ③当a>1时,由(1)知函数f(x)在[0,]上单调递减, 在[,a]上单调递增,且f(0)=f(1), 所以f(x)max=f(a)=2a+21-a-1,f(x)min=f()=2-1. |