已知函数f(x)=(x+1)lnx.(1)求f(x)在x=1处的切线方程;(2)设g(x)=1a(1-x)f(x),对任意x∈(0,1),g(x)<-2,求实数

已知函数f(x)=(x+1)lnx.(1)求f(x)在x=1处的切线方程;(2)设g(x)=1a(1-x)f(x),对任意x∈(0,1),g(x)<-2,求实数

题型:不详难度:来源:
已知函数f(x)=(x+1)lnx.
(1)求f(x)在x=1处的切线方程;
(2)设g(x)=
1
a(1-x)
f(x)
,对任意x∈(0,1),g(x)<-2,求实数a的取值范围.
答案
(本小题满分12分)
(1)函数f(x)=(x+1)lnx定义域为(0,+∞),…(1分)
f(x)=lnx+
1+x
x

∴f′(1)=2,且切点为(1,0)…(4分)
故f(x)在x=1处的切线方程y=2x-2.…-(6分)
(2)由已知a≠0,因为x∈(0,1),
所以
1+x
1-x
•lnx<0

①当a<0时,g(x)>0,不合题意.…(8分)
②当a>0时,x∈(0,1),
由g(x)<-2,得lnx+
2a(1-x)
1+x
<0

h(x)=lnx+
2a(1-x)
1+x

则x∈(0,1),h(x)<0.h(x)=
x2+(2-4a)x+1
x(1+x)2

设m(x)=x2+(2-4a)x+1,
方程m(x)=0的判别式△=16a(a-1).
若a∈(0,1],△≤0,m(x)≥0,h′(x)≥0,
h(x)在(0,1)上是增函数,又h(1)=0,
所以x∈(0,1),h(x)<0.…(10分)
若a∈(1,+∞),△>0,m(0)=1>0,m(1)=4(1-a)<0,
所以存在x0∈(0,1),使得m(x0)=0,
对任意x∈(x0,1),m(x)<0,h′(x)<0,h(x)在(x0,1)上是减函数,
又h(1)=0,所以x∈(x0,1),h(x)>0.
综上,实数a的取值范围是(0,1].…(12分)
举一反三
设函数f(x)=x(ex-1)-ax2
(Ⅰ)若a=
1
2
,求f(x)的单调区间;
(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=lnx,g(x)=ex
( I)若函数φ(x)=f(x)-
x+1
x-1
,求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.
题型:哈尔滨一模难度:| 查看答案
设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
1
2
,1)
内不单调,求实数a的取值范围.
题型:不详难度:| 查看答案
已知 f(x)=
x
ex
(e是自然对数的底数),
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)-k只有一个零点,求实数k的取值范围;
(Ⅲ)求证
e(en-1)-n(e-1)
(e-1)2en
n
e
题型:不详难度:| 查看答案
已知函数f(x)=lnx-
a(x-1)
x+1

(1)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围;
(2)设m,n∈R,且m≠n,求证
m-n
lnm-lnn
m+n
2
题型:梅州一模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.