已知函数f (x)=2x3-3(2+a2)x2+6(1+a2)x+1(a∈R).(Ⅰ)若函数f (x)在R上单调,求a的值;(Ⅱ)若函数f (x)在区间[0,2

已知函数f (x)=2x3-3(2+a2)x2+6(1+a2)x+1(a∈R).(Ⅰ)若函数f (x)在R上单调,求a的值;(Ⅱ)若函数f (x)在区间[0,2

题型:不详难度:来源:
已知函数f (x)=2x3-3(2+a2)x2+6(1+a2)x+1(a∈R).
(Ⅰ)若函数f (x)在R上单调,求a的值;
(Ⅱ)若函数f (x)在区间[0,2]上的最大值是5,求a的取值范围.
答案
(Ⅰ)f′(x)=6x2-6(2+a2)x+6(1+a2
=6(x-1)(x-1-a2),
因为函数f(x)在R上单调,
所以1=1+a2
即a=0.(6分)
(Ⅱ)因为1≤1+a2
所以{f(x)}max={f(1),f(2)}max={3a2+3,5}max=5,
即3a2+3≤5,
解此不等式,得
-


6
3
≤a≤


6
3

所以a的取值范围是-


6
3
≤a≤


6
3
.(15分)
举一反三
已知f(x)=x+asinx.
(Ⅰ)若f(x)在(-∞,+∞)上为增函数,求实数a的取值范围;
(Ⅱ)当a>0时,求g(x)=
f(x)
x
[
π
6
6
]
上的最大值和最小值.
题型:不详难度:| 查看答案
设f (x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)
题型:不详难度:| 查看答案
已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a的取值范围是______.
题型:不详难度:| 查看答案
已知a>0,函数f(x)=-x3+ax在[1,+∞)上是减函数,则a的取值范围是(  )
A.a≥1B.0<a≤2C.0<a≤3D.1≤a≤3
题型:不详难度:| 查看答案
已知函数f(x)=lnx-
1
2
ax2+(a-1)x
(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x0,y0),使得:①x0=
x1+x2
2
;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.