设函数f(x)=13ax3+bx2+cx(a<b<c),其图象在点A(1,f(1)),B(m,f(m))处的切线的斜率分别为0,-a.(1)求证:0≤ba<1;

设函数f(x)=13ax3+bx2+cx(a<b<c),其图象在点A(1,f(1)),B(m,f(m))处的切线的斜率分别为0,-a.(1)求证:0≤ba<1;

题型:不详难度:来源:
设函数f(x)=
1
3
ax3+bx2+cx(a<b<c)
,其图象在点A(1,f(1)),B(m,f(m))处的切线的斜率分别为0,-a.
(1)求证:0≤
b
a
<1

(2)若函数f(x)的递增区间为[s,t],求|s-t|的取值范围.
答案
(1)证明:因为f′(x)=ax2+2bx+c…(1分)
于是依题意有f′(1)=a+2b+c=0,①…(1分)
f′(m)=am2+2bm+c=-a,②…(1分)
又由a<b<c,可得4a<a+2b+c<4c,即4a<0<4c,所以a<0,c>0,
由①得c=-a-2b,
∵a<b<c,a<0
-
1
3
b
a
<1
③…(2分)
将c=-a-2b代入②得am2+2bm-2b=0,即方程ax2+2bx-2b=0有实根,故其判别式△=4b2+8ab≥0,
由此可得(
b
a
)2+2(
b
a
)≥0

解得
b
a
≤-2
b
a
≥ 0
④…(2分)
由③、④即可得0≤
b
a
<1
;  …(1分)
(2)由于f′(x)=ax2+2bx+c的判别式△′=4b2-4ac>0,…(1分)
所以方程a2+2bx+c=0(*)有两个不相等的实数根,设为x1,x2
又由f′(1)=a+2b+c=0知1是(*)的一个根,记x1=1,…(1分)
则由根与系数的关系得1+x2=-
2b
a
,即x2=-1-
2b
a
<0<x1

当x<x2或x>1时,f"(x)>0;当x2<x<1时,f"(x)>0,…(1分)
所以函数f(x)的单调递增区间为[x2,1]
由题设[x2,1]=[s,t],…(1分)
因此|s-t|=|1-x2|=2+
2b
a

由(1)知0≤
b
a
<1
,所以|s-t|∈[2,4).…(1分)
举一反三
已知曲线f(x)=x3+ax2+bx+1,(a,b∈R)在(1,2)处的切线方程是y=4x-2,则函数y=f(x)的极大值为______.
题型:宁波模拟难度:| 查看答案
已知函数f(x)=cos(x+θ),θ∈R,若
lim
x→0
f(π+x)-f(π)
x
=1,则函数f(x)的解析式为(  )
A.f(x)=-sinxB.f(x)=-cosxC.f(x)=sinxD.f(x)=cosx
题型:成都二模难度:| 查看答案
曲线y=x2+2x-1在点(1,2)处的切线方程是______.
题型:花都区模拟难度:| 查看答案
过抛物线x2=2y上两点A(-1,
1
2
)、B(2,2)分别作抛物线的切线,两条切线交于点M.
(1)求证:∠BAM=∠BMA;
(2)记过点A、B且中心在坐标原点、对称轴为坐标轴的双曲线为C,F1、F2为C的两个焦点,B1、B2为C的虚轴的两个端点,过点B2作直线PQ分别交C的两支于P、Q,当


PB1


QB1
∈(0,4]时,求直线PQ的斜率k的取值范围.
题型:成都二模难度:| 查看答案
曲线y=sinx在点(
π
3


3
2
)处的切线方程为 ______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.