(1)∵f(x)定义域为(0,+∞),∴f′(x)= ∵f()=-e,又∵k=f′()=2e2, ∴函数y=f(x)的在x=处的切线方程为: y+e=2e2(x-),即y=2e2x-3e. (2)令f′(x)=0得x=e. ∵当x∈(0,e)时,f′(x)>0,f(x)在(0,e)上为增函数, 当x∈(e,+∞)时,f′(x)<0,则在(e,+∞)上为减函数, ∴fmax(x)=f(e)=. (3)∵a>0,由(2)知: F(x)在(0,e)上单调递增,在(e,+∞)上单调递减. ∴F(x)在[a,2a]上的最小值f(x)min=min{F(a),F(2a)}, ∵F(a)-F(2a)=ln, ∴当0<a≤2时,F(a)-F(2a)≤0,fmin(x)=F(a)=lna. 当a>2时,F(a)-F(2a)>0,f(x)min=f(2a)=ln2a. |