已知函数f(x)=ln(12+12ax)+x2-ax.(a为常数,a>0)(Ⅰ)若x=12是函数f(x)的一个极值点,求a的值;(Ⅱ)求证:当0<a≤2时,f(

已知函数f(x)=ln(12+12ax)+x2-ax.(a为常数,a>0)(Ⅰ)若x=12是函数f(x)的一个极值点,求a的值;(Ⅱ)求证:当0<a≤2时,f(

题型:湖北模拟难度:来源:
已知函数f(x)=ln(
1
2
+
1
2
ax)+x2-ax
.(a为常数,a>0)
(Ⅰ)若x=
1
2
是函数f(x)的一个极值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在[
1
2
,+∞)
上是增函数;
(Ⅲ)若对任意的a∈(1,2),总存在 x0∈[
1
2
,1]
,使不等式f(x0)>m(1-a2)成立,求实数m的取值范围.
答案
由题得:f′(x)=
1
2
a
1
2
+
1
2
ax
+2x-a=
2ax(x-
a2-2
2a
)
1+ax

(Ⅰ)由已知,得f′(
1
2
)=0
a2-2
2a
≠0
,∴a2-a-2=0,∵a>0,∴a=2.(2分)
(Ⅱ)当0<a≤2时,∵
a2-2
2a
-
1
2
=
a2-a-2
2a
=
(a-2)(a+1)
2a
≤0
,∴
1
2
a2-2
2a

∴当x≥
1
2
时,x-
a2-2
2a
≥0
.又
2ax
1+ax
>0

∴f"(x)≥0,故f(x)在[
1
2
,+∞)
上是增函数.(5分)
(Ⅲ)a∈(1,2)时,由(Ⅱ)知,f(x)在[
1
2
,1]
上的最大值为f(1)=ln(
1
2
+
1
2
a)+1-a

于是问题等价于:对任意的a∈(1,2),不等式ln(
1
2
+
1
2
a)+1-a+m(a2-1)>0
恒成立.
g(a)=ln(
1
2
+
1
2
a)+1-a+m(a2-1)
,(1<a<2)
g′(a)=
1
1+a
-1+2ma=
a
1+a
[2ma-(1-2m)]

当m=0时,g′(a)=
-a
1+a
<0
,∴g(a)在区间(1,2)上递减,此时,g(a)<g(1)=0,
由于a2-1>0,∴m≤0时不可能使g(a)>0恒成立,
故必有m>0,∴g′(a)=
2ma
1+a
[a-(
1
2m
-1)]

1
2m
-1>1
,可知g(a)在区间(1,min{2,
1
2m
-1})
上递减,在此区间上,有g(a)<g(1)=0,与g(a)>0恒成立矛盾,故
1
2m
-1≤1

这时,g"(a)>0,g(a)在(1,2)上递增,恒有g(a)>g(1)=0,满足题设要求,





m>0
1
2m
-1≤1
,即m≥
1
4

所以,实数m的取值范围为[
1
4
,+∞)
.(14分)
举一反三
已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2013的值为______.
题型:不详难度:| 查看答案
已知函数f(x)=x3+3ax2+3bx+c在x=2处有极限值,其图象在x=1处的切线与直线6x+2y+5=0平行.
(1)求a、b的值;
(2)当x∈[1,3]时,f(x)>1-4c2恒成立,求实数c的取值范围.
题型:不详难度:| 查看答案
已知a∈R,函数f(x)=
a
x
+lnx-1

(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)求f(x)在区间(0,e]上的最小值.
题型:不详难度:| 查看答案
已知a是实数,函数f(x)=x2(x-a).
(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[0,2]上的最大值.
题型:浙江难度:| 查看答案
已知函数f(x)=x3-ax2+bx+c(a,b,c∈R).
(1)若函数f(x)在x=1或x=3处取得极值,试求a,b的值;
(2)在(1)的条件下,当x∈[-2,5]时,f(x)<c2恒成立,求c的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.