已知函数f(x)=ax3-32x2+b,(x∈R).(1)若曲线y=f(x)在点(2,f(2))处的切线方程为y=6x-8,求a的值;(2)若a>0,b=2,当

已知函数f(x)=ax3-32x2+b,(x∈R).(1)若曲线y=f(x)在点(2,f(2))处的切线方程为y=6x-8,求a的值;(2)若a>0,b=2,当

题型:不详难度:来源:
已知函数f(x)=ax3-
3
2
x2+b,(x∈R).
(1)若曲线y=f(x)在点(2,f(2))处的切线方程为y=6x-8,求a的值;
(2)若a>0,b=2,当x∈[-1,1]时,求f(x)的最小值.
答案
(1)f′(x)=3ax2-3x,f′(2)=6得a=1
由切线方程y=6x-8得f(2)=4;
又f(2)=8a-6+b=b+2,所以b=2
所以a=1,b=2
(2)f(x)=ax3-
3
2
x2+2
f′(x)=3ax2-3x=3x(ax-1).令f′(x)=0,解得x=0或x=
1
a

以下分两种情况讨论:
①若
1
a
>1即0<a<1,当x变化时,f’(x),f(x)的变化情况如下表:
解析
举一反三
题型:北京难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

X(-1,0)0(0,1)
f′(x)+0-
f(x)极大值
X(-1,0)0(0,
1
a
1
a
1
a
,1)
f’(x)+0-0+
f(x)极大值极小值
设定函数f(x)=
a
3
x3+bx2+cx+d(a>0)
,且方程f′(x)-9x=0的两个根分别为1,4.
(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)无极值点,求a的取值范围.
已知函数f(x)=ln(1+x)-
1
4
x2

(1)求函数在点(0,f(0))处的切线方程;
(2)求函数在[0,2]上的最大值和最小值.
已知x=1为奇函数f(x)=
1
3
ax3+bx2+(a2-6)x的极大值点,
(1)求f(x)的解析式;
(2)若P(m,n)在曲线y=f(x)上,证明:过点P作该曲线的切线至多存在两条.
设f(x)=[x2-(t+3)x+2t+3]•ex,t∈R
(1)若f(x)在R上无极值,求t值;
(2)求f(x)在[1,2]上的最小值g(t)表达式;
(3)若对任意的t∈[1,+∞),任意的x∈[1,2],均有m≤f(x)成立,求m的取值范围.
已知函数f(x)=ln(1+2x)-2x+ax2
(1)若a=1,求f(x)的单调区间;
(2)若函数f(x)存在两个极值点,且都小于1,求a的取值范围;
(3)若对f(x)定义域内的任意x,不等式f(x)≤0恒成立,求a的取值范围.