若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于( ).
题型:月考题难度:来源:
若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于( ). |
答案
9 |
举一反三
若函数f(x)=在x=1处取极值,则a=( ). |
设函数f(x)=xex,则 |
[ ] |
A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点 C.x=-1为f(x)的极大值点 D.x=-1为f(x)的极小值点 |
已知关于x的函数 ,其导函数f′(x). (1)如果函数 ,试确定b、c的值; (2)设当x∈(0,1)时,函数y=f(x)﹣c(x+b)的图象上任一点P处的切线斜率为k,若k≤1,求实数b的取值范围. |
已知函数,f(x)=alnx﹣ax﹣3(a∈R). (1 )当a=1时,求函数f(x)的单调区间; (2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数在区间(t,3)上总存在极值? |
定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1﹣|x﹣3|.若函数的所有极大值点均落在同一条直线上,则c=( ). |
最新试题
热门考点