设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,则实数a的值为______.

设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,则实数a的值为______.

题型:不详难度:来源:
设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,则实数a的值为______.
答案
由题意,f′(x)=3ax2-3,
当a≤0时3ax2-3<0,函数是减函数,f(0)=1,只需f(1)≥0即可,解得a≥2,与已知矛盾,
当a>0时,令f′(x)=3ax2-3=0解得x=±


a
a

①当x<-


a
a
时,f′(x)>0,f(x)为递增函数,
②当-


a
a
<x<


a
a
时,f′(x)<0,f(x)为递减函数,
③当x>


a
a
时,f(x)为递增函数.
所以f(


a
a
)≥0,且f(-1)≥0,且f(1)≥0即可
由f(


a
a
)≥0,即a•(


a
a
)
3
-3•


a
a
+1≥0,解得a≥4,
由f(-1)≥0,可得a≤4,
由f(1)≥0解得2≤a≤4,
综上a=4为所求.
故答案为:4.
举一反三
一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小?
题型:不详难度:| 查看答案
函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.
题型:不详难度:| 查看答案
f(x)=x3-
1
2
x2-2x+5
,当x∈[-1,2]时,f(x)<m恒成立,则实数m的取值范围为 ______.
题型:不详难度:| 查看答案
函数y=x+
3
x
,x∈[2,+∞)的最小值为______.
题型:不详难度:| 查看答案
某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为P元,则销售量Q(单位:件)与零售价P(单位:元)有如下关系:Q=8300-170P-P2.问该商品零售价定为______元时毛利润最大(毛利润=销售收入-进货支出).
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.