已知函数f(x)=alnx-ax-3(a∈R)。 (1)讨论函数f(x)的单调性; (2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,

已知函数f(x)=alnx-ax-3(a∈R)。 (1)讨论函数f(x)的单调性; (2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,

题型:0117 月考题难度:来源:
已知函数f(x)=alnx-ax-3(a∈R)。
(1)讨论函数f(x)的单调性;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],若函数g(x)=x3+x2[f′(x)+]在区间(t,3)上有最值,求实数m取值范围;
(3)求证:
答案
解:(1)
①a>0,当0<x<1时,>0,f(x)在(0,1)上单调递增;
当x>1时,<0,f(x)在(1,+∞)上单调递减;
②a=0时,f(x)=-3,是常数函数,无单调性;
③a<0,当0<x<1时,<0,f(x)在(0,1)上单调递减;
当x>1时,>0,f(x)在(1,+∞)上单调递增。
(2)
(3)证明“略”。
举一反三

设f(x)=+xlnx,g(x)=x3-x2-3.
(1)a=2时,求曲线y=f(x)在x=1处得切线方程;
(2)若果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,求实数a的取值范围。

题型:0111 月考题难度:| 查看答案
设f(x)=+xlnx,g(x)=x3-x2-3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)- g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,求实数a的取值范围.
题型:0112 模拟题难度:| 查看答案
曲线f(x)=xlnx的最小值为 [     ]
A.
B.e
C.-e
D.
题型:广东省模拟题难度:| 查看答案
已知a∈R,函数f(x)=xln(-x)+(a-1)x,(注:[ln(-x)] ′=
(Ⅰ)若f(x)在x=-e处取得极值,求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[-e2,-e-1]上的最大值g(a)。
题型:0110 月考题难度:| 查看答案
某品牌电视生产厂家有A、B两种型号的电视机参加了家电下乡活动,若厂家对A、B两种型号的电视机的投放金额分别为p、q万元,农民购买A、B两种电视机获得的补贴分别为万元,已知A、B两种型号的电视机的投放总额为10万元,且A、B两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:ln4≈1.4)。
题型:广东省模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.