试题分析:(1)因为底面,所以有,因此欲证平面,只要证,而这一点可通过连结,利用菱形的性质及勾股定理解决. (2)欲求四棱锥的体积.,必须先求出,连结,设,在利用余弦定理求出,由三个直角三角形,依据勾股定理建立关于的方程即可. 解:(1)如图,因为菱形,为菱形中心,连结,则,因,故
又因为,且,在中
所以,故 又底面,所以,从而与平面内两条相交直线都垂直,所以平面 (2)解:由(1)可知, 设,由底面知,为直角三角形,故
由也是直角三角形,故 连结,在中,
由已知,故为直角三角形,则
即,得,(舍去),即 此时
所以四棱锥的体积
|