有4个不同的球,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒内放2个球,有多少种放法?(4)
题型:不详难度:来源:
有4个不同的球,四个不同的盒子,把球全部放入盒内. (1)共有多少种放法? (2)恰有一个盒子不放球,有多少种放法? (3)恰有一个盒内放2个球,有多少种放法? (4)恰有两个盒不放球,有多少种放法? |
答案
(1)256(2)144(3)144(4)84 |
解析
试题分析:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有:种. (2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:种. (3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法. (4)先从四个盒子中任意拿走两个有种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有种放法;第二类:有种放法.因此共有种.由分步乘法计数原理得“恰有两个盒子不放球”的放法有:种. 点评:两个计数原理是解决这类问题的基础,而排列组合的准确灵活应用是解决这类问题的关键,要分清是排列问题还是组合问题,是分类还是分步,要坚持特殊元素优先和特殊位置优先的原则. |
举一反三
设,则二项式的展开式中的常数项等于 . |
旅游公司为3个旅游团提供4条旅游线路,每个旅游团只能任选其中一条,则不同的选择方法有( )种. |
现有排成一排的7个座位,安排3名同学就座,如果要求剩余的4个座位连在一起,那么不同的坐法总数为( ) |
设,那么的值为( ) |
已知位于坐标原点的一个质点P按下述规则移动,质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是,则质点P移动六次后位于点(4,2)的概率是 ( ) |
最新试题
热门考点