如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为an.求(Ⅰ)a1,a2,a3,a4;(Ⅱ)an与an+1

如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为an.求(Ⅰ)a1,a2,a3,a4;(Ⅱ)an与an+1

题型:重庆二模难度:来源:
如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为an.求
(Ⅰ)a1,a2,a3,a4
(Ⅱ)an与an+1(n≥2)的关系式;
(Ⅲ)数列{an}的通项公式an,并证明an≥2n(n∈N*).魔方格
答案
(Ⅰ) 当n=1时,不同的染色方法种数a1=3,
当n=2时,不同的染色方法种数a2=6,
当n=3时,不同的染色方法种数a3=6,
当n=4时,分扇形区域1,3同色与异色两种情形
∴不同的染色方法种数a4=3×1×2×2+3×2×1×1=18.
(Ⅱ)依次对扇形区域1,2,3,…n,n+1染色,不同的染色方法种数为3×2n,其中扇形区域1与n+1不同色的有an+1种,扇形区域1与n+1同色的有an
∴an+an+1=3×2n(n≥2)
(Ⅲ)∵an+an+1=3×2n(n≥2)
∴a2+a3=3×22
a3+a4=3×23

an-1+an=3×2n-1将上述n-2个等式两边分别乘以(-1)k(k=2,3…n-1),再相加,得
a2+(-1)n-1an=3×22-3×23+…+3×(-1)k×2n-1=
22[1-(-2)n-1
1-(-2)

∴an=2n+2•(-1)n从而an=





3               n=1
2n+2•(-1)n
n≥2

(Ⅲ)证明:当n=1时,a1=3>2×1
当n=2时,a2=6>2×2,
当n≥3时,
an=2n+2•(-1)n=(1+1)n+2•(-1)n
=1+n+C2n+C3n+…+Cn-2n+n+1+2•(-1)n
≥2n+2+2(-1)n≥2n,
故an≥2n(n∈N*).
举一反三
电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有______种不同的播放方式(结果用数值表示).
题型:上海难度:| 查看答案
设函数f(x)=(x+1)n(n∈N),且当x=


2
时,f(x)的值为17+12


2
;g(x)=(x+a)m(a≠1,a∈R),定义:F(x)=
C2m+14n-7
f(x)-
C2n+94m+1
g(x).
(1)当a=-1时,F(x)的表达式.
(2)当x∈[0,1]时,F(x)的最大值为-65,求a的值.
题型:蚌埠二模难度:| 查看答案
将写有1,2,3,4,5的5张卡片分别放入标有1,2,3,4,5的5个盒子内,每个盒子里放且只放1张卡片,那么2号卡片不在2号盒内且4号卡片不在4号盒内的放法数等于(  )
A.42B.72C.78D.120
题型:杭州二模难度:| 查看答案
某文艺团体下基层进行宣传演出,原准备的节目表中有6个节目,如果保持这些节目的相对顺序不变,在它们之间再插入2个小品节目,并且这2个小品节目在节目表中既不排头,也不排尾,则不同的插入方法有(  )
A.20种B.30种C.42种D.56种
题型:广州一模难度:| 查看答案
有9名歌舞演员,其中7名会唱歌,5名会跳舞,从中选出2人,并指派一人唱歌,另一个跳舞,则不同的选派方法有(  )
A.19种B.32种C.72种D.30种
题型:宁波模拟难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.