如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.试探究点M的位置,使F—AE—M为直二面角.

如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.试探究点M的位置,使F—AE—M为直二面角.

题型:不详难度:来源:
如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.试探究点M的位置,使F—AE—M为直二面角.
答案
M为BC的中点
解析

试题分析:以D为坐标原点,分别以DA、DC、DF所在直线为x、y、z轴,建立空间直角坐标D-xyz,
依题意,得D(0,0,0),A(1,0,0),F(0,0,1),C(0,1,0),B(1,1,0),E(1,1,1),
设M(λ,1,0),平面AEF的法向量为=(x1,y1,z1),平面AME的法向量为
=(x2,y2,z2)
=(0,1,1),=(-1,0,1), ∴   ∴
取z1=1,得x1=1,y1=-1  ∴=(1,-1,0) 
=(λ-1,1,0) ,=(0,1,1),
 ∴
取x2=1得y2=1-λ,z2=λ-1       ∴=(1,1-λ,λ-1)
若平面AME⊥平面AEF,则 ∴=0,
∴1-(1-λ)+(λ-1)=0,解得λ=
此时M为BC的中点.
所以当M在BC的中点时,平面AME⊥平面AEF.        ……………12分
点评:空间向量解立体几何题目首要的是找到坐标系合适的位置,写出相关点的坐标
举一反三
图甲所表示的简单组合体可由下面某个图形绕对称轴旋转而成,这个图形是(   )

题型:不详难度:| 查看答案
下列说法正确的是(    )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱.
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.
C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.
D.棱台各侧棱的延长线交于一点.

题型:不详难度:| 查看答案
三棱锥的高为,若三个侧面两两垂直,则一定为△的(   )
A.垂心 B.外心C.内心D.重心

题型:不详难度:| 查看答案
(本小题满分12分)
如图,在四棱柱中,,底面是直角梯形,,异面直线所成角为

(1)求证:平面
(2)求直线与平面所成角的正弦值.
题型:不详难度:| 查看答案
一空间几何体的三视图如图,则该几何体的体积为(  )
A.B.
C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.