在直角梯形ABCD中, A为PD的中点,如下图,将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,(1)求证:SA⊥平面ABCD;(2)求二面角E

在直角梯形ABCD中, A为PD的中点,如下图,将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,(1)求证:SA⊥平面ABCD;(2)求二面角E

题型:不详难度:来源:
在直角梯形ABCD中, A为PD的中点,如下图,
将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,

(1)求证:SA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值;
(3)在线段BC上是否存在点F,使SF//平面EAC?若存在,确定F点的位置,若不存在,请说明理由?
答案
(1)证:由原图可知:BC⊥AB,又SB⊥BC,且AB∩AB=B,
得BC⊥面SAB,得BC⊥SA,
又原图可知SA⊥AB,且AB∩BC=B,
即证:SA⊥面ABCD
  

解析

举一反三
正四棱锥的高,底边长,则异面直线之间的距离(   )
A.B.C.D.

题型:不详难度:| 查看答案
平方米的材料制成一个有盖的圆锥形容器,如果在制作过程中材料无损耗,且材料的厚度忽略不计,底面半径长为,圆锥母线的长为

(1)、建立的函数关系式,并写出的取值范围;(6分)
(2)、圆锥的母线与底面所成的角大小为,求所制作的圆锥形容器容积多少立方米(精确到0. 01m3) (6分)
题型:不详难度:| 查看答案
一个平面截一个球得到截面面积为的圆面,球心到这个平面的距离是,则该球的表面积是( )
A.B.C.D.

题型:不详难度:| 查看答案
本小题满分13分)
如图,已知ABCD是边长为2的正方形,平面ABCD,平面ABCD,且FB=2DE=2。

(1)求点E到平面FBC的距离;
(2)求证:平面平面AFC。
题型:不详难度:| 查看答案
在120°的二面角内,放一个半径为5cm的球切两半平面于A、B两点,那么这两个切点在球面上的最短距离是                       。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.