(本小题满分10分)在正方体中,E,F分别是CD,A1D1中点(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP

(本小题满分10分)在正方体中,E,F分别是CD,A1D1中点(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP

题型:不详难度:来源:
(本小题满分10分)

在正方体中,E,F分别是CD,A1D1中点
(1)求证:AB1⊥BF;
(2)求证:AE⊥BF;
(3)棱CC1上是否存在点P,使BF⊥平面AEP,若存在,
确定点P的位置;若不存在,说明理由
答案

(1)略
(2)略
(3)存在
解析
解:(1)证明:连结A1B,CD1 ∵AB1⊥A1B, AB1⊥BC,A1B∩BC=B ∴AB1⊥平面A1BCD1 , 又BF平面A1BCD1 ,所以AB1⊥BF
(2) 证明:取AD中点M,连结FM,BM             
∵ABCD为正方形,E,M分别为所在棱的中点,
∴AE⊥BM,又∵FM⊥AE,BM∩FM="M,             "
∴AE⊥平面BFM, 又BF平面BFM,∴AE⊥BF
(3) 存在,P是CC1的中点,则易证PE∥AB1,故A,B1,E,P四点共面
证明:由(1)(2)知AB1⊥BF,AE⊥BF,AB1∩AE=A,∴BF⊥平面AEB1,       
即BF⊥平面AEP
举一反三
(本小题满分12分)
如图,斜三棱柱ABC-A1B1C1的侧面AA1C1C是面积为的菱形,∠ACC1为锐角,侧面ABB1A1⊥侧面AA1C1C,且A1B=AB=AC=1.

(1)求证:AA1⊥BC1;
(2) 求三棱锥A1-ABC的体积.
题型:不详难度:| 查看答案
((本题满分12分)
已知长方体ABCD-中,棱AB=BC=3,=4,连结, 在上有点E,使得⊥平面EBD ,BE交于F.

(1)求ED与平面所成角的大小;
(2)求二面角E-BD-C的大小.
题型:不详难度:| 查看答案
(本题满分14分).如图,ABCD中,AB=1,AD=2AB,∠ADC=,EC⊥面ABCD,
EF∥AC, EF=, CE=1
(1)求证:AF∥面BDE
(2)求CF与面DCE所成角的正切值。
题型:不详难度:| 查看答案
ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=

求证:平面ACD⊥平面PAC;
求异面直线PC与BD所成角的余弦值;
设二面角A—PC—B的大小为,试求的值。
题型:不详难度:| 查看答案
(本小题满分12分)
棱锥的底面正方形,侧棱的中点在底面内的射影恰好是正方形的中心顶点在截面的射影恰好是的重心

(1)求直线与底面所成角的正切值;
(2)设,求此四棱锥过点的截面面积.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.