(本小题12分)四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。(1)求证:BC⊥平面PAC

(本小题12分)四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。(1)求证:BC⊥平面PAC

题型:不详难度:来源:
(本小题12分)四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。
(1)求证:BC⊥平面PAC;
(2)求二面角D-PC-A的大小的正切值;
(3)求点B到平面PCD的距离。
答案
(1)同解析(2)二面角D-PC-A的大小的正切值为2。(3)即点B到平面PCD的距离为

解析
解法一:(1)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC
(2)∵AB∥CD,∠BAD=120°,∴∠ADC=60°,又AD=CD=1
∴ΔADC为等边三角形,且AC=1,取AC的中点O,则DO⊥AC,又PA⊥底面ABCD,
∴PA⊥DO,∴DO⊥平面PAC,过O作OH⊥PC,垂足为H,连DH
由三垂成定理知DH⊥PC,∴∠DHO为二面角D-PC-A的平面角
由OH=,DO=,∴tan∠DHO==2
∴二面角D-PC-A的大小的正切值为2。
(3)设点B到平面PCD的距离为d,又AB∥平面PCD
∴VA-PCD=VP-ACD,即
 即点B到平面PCD的距离为

举一反三
已知E,F分别是正方体ABCD-A1B1C1D1的棱BC和CD的中点,求:
(1)A1D与EF所成角的大小;
(2)A1F与平面B1EB所成角;
(3)二面角C-D1B1-B的大小.
题型:不详难度:| 查看答案
(本小题满分12分)如图,在底面为直角梯形的四棱锥中,平面.PA=4,AD=2,AB=,BC=6
(Ⅰ)求证:平面
(Ⅱ)求二面角D—PC—A的大小.
题型:不详难度:| 查看答案
正四面体ABCD的棱长为1,棱AB//平面,则正四面体上的所有点在平面内的射影构成图形面积的取值范围是
A.B.
C.D.

题型:不详难度:| 查看答案
(本小题满分12分)
一个四棱锥的底面是边长为的正方形,且
(1)求证:平面
(2)若为四棱锥中最长的侧棱,点的中点.求直线SE.与平面SAC所成角的正弦值。
题型:不详难度:| 查看答案
(本小题满分12分)
已知等腰直角三角形,其中∠=90º,.点分别是的中点,现将△沿着边折起到△位置,使,连结
(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.