(本题满分12分)如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD(1)求证:BF∥平面ACE;(2)求二面角B-AF-C

(本题满分12分)如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD(1)求证:BF∥平面ACE;(2)求二面角B-AF-C

题型:不详难度:来源:
(本题满分12分)如图,ABCD是边长为2的正方形,ED⊥平面ABCDED=1,EFBDEFBD
(1)求证:BF∥平面ACE;(2)求二面角BAFC的大小;
(3)求点F到平面ACE的距离.
答案
(Ⅰ)见解析  (Ⅱ)   (Ⅲ)
解析
1)记AC与BD的交点为O,连接EO,则可证BF∥EO,又面ACE,面ACE,故BF∥平面ACE;                                                       (3分)
解:(2)过点O作OG⊥AF于点G,连接GB,则可证∠OGB为二面角B-AF-C的平面角.在Rt△FOA中,可求得OG=,又OB=,故
,即二面角B-AF-C的大小为;   (8分)


(第19题答案图)


 
(3)点F到平面ACE的距离等于点B到平面ACE的距离,也等于点D到平面ACE
的距离,该距离就是Rt△EDO斜边上的高,
.         (12分)
(本题运用向量法解答正确,请参照给分)
举一反三
对于四面体ABCD,下列命题正确的是         (写出所有正确命题的编号)。
①相对棱ABCD所在的直线异面;
②由顶点A作四面体的高,其垂足是BCD的三条高线的交点;
③若分别作ABCABD的边AB上的高,则这两条高所在直线异面;
④分别作三组相对棱中点的连线,所得的三条线段相交于一点;
⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱。
题型:不详难度:| 查看答案
如图,已知正方体ABCD-A1B1C1D1AD1A1D相交于点O

(1)判断AD1与平面A1B1CD的位置关系,并证明;
(2)求直线AB1与平面A1B1CD所成的角.
题型:不详难度:| 查看答案
(本小题满分12分)已知ABCD是矩形,EF分别是线段ABBC的中点,ABCD.  (1)证明:PFFD
(2)在PA上找一点G,使得EG∥平面PFD.
题型:不详难度:| 查看答案
如图所示,平面ABC,CE//PA,PA=2CE=2。 
(1)求证:平面平面APB;  (2)求二面角A—BE—P的正弦值。
题型:不详难度:| 查看答案
在正方体
,求所成角的正弦值。

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.