如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点. (1)证明PA//平面BDE;              

如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点. (1)证明PA//平面BDE;              

题型:不详难度:来源:
如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明PA//平面BDE;              
(2)求二面角B—DE—C的平面角的余弦值;
(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
答案
(Ⅰ)证明见解析(Ⅱ)(Ⅲ)存在
解析
(1)以D为坐标原点,分别以DA、DC、DP所在直线为x轴、y轴、z轴建立空间直角坐标系,设PD=DC=2,则A(2,0,0),P(0,0,2),E(0,1,1),…………2分
B(2,2,0)   
是平面BDE的一个法向量,
则由                 ………………4分
   …………5分
(2)由(Ⅰ)知是平面BDE的一个法向量,又是平面DEC的一个法向量.                                      ………………7分
设二面角B—DE—C的平面角为,由图可知

故二面角B—DE—C的余弦值为                                                   ………………10分
(3)∵

假设棱PB上存在点F,使PB⊥平面DEF,设

                             ………………13分
                                                    ………………14分
即在棱PB上存在点F,PB,使得PB⊥平面DEF           ………………15分
用几何法证明酌情给分
举一反三
如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,
M为AP的中点.
(Ⅰ)求证:DM∥平面PCB;                      
(Ⅱ)求直线AD与PB所成角;
(Ⅲ)求三棱锥P-MBD的体积.
题型:不详难度:| 查看答案
已知四棱锥P-ABCD,底面是边长为1的正方形,侧棱PC长为2,且PC⊥底面ABCD,E是侧棱PC上的动点。
(Ⅰ)不论点E在何位置,是否都有BD⊥AE?证明你的结论;
(Ⅱ)求点C到平面PDB的距离;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.
题型:不详难度:| 查看答案
在棱长为的正方体中,为棱的中点.
(Ⅰ)求证:平面;   (Ⅱ)求与平面所成角的余弦值.
题型:不详难度:| 查看答案
如图,在四棱锥中,底面是矩形,已知
(1)证明:平面
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角的大小.
题型:不详难度:| 查看答案
如图,已知:在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=AB=2,E,F分别是AB与PD的中点.
(1)求证:PC⊥BD;
(2)求证:AF//平面PEC;
(3)求二面角P—EC—D的大小.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.