(1)取A1C1中点F,连结B1F,DF,∵D1E分别为AC1和BB1的中点,DF∥AA1, DF=(1/2)AA1,B1E∥AA1,B1E=(1/2)AA1,∴DF∥B1E,DF=B1E,∴DEB1F为平行四边形,∴DE∥B1F,又B1F在平面A1B1C1内,DE不在平面A1B1C1,∴DE∥平面A1B1C1 (2)连结A1D,A1E,在正棱柱ABC—A1B1C1中,因为平面A1B1C1⊥平面ACC1A1,A1C1是平面A1B1C1与平面ACC1A1的交线,又因为B1F在平面A1B1C1内,且B1F⊥A1C1,,所以B1F⊥平面ACC1A1,又DE∥B1F,所以DE⊥平面ACC1A1所以∠FDA1为二面角A1—DE—B1的平面角。并且∠FDA1=(1/2)∠A1DC1,设正三棱柱的棱长为1,因为∠AA1C1=900,D是AC1的中点,所以即为所求的二面角的度数。 |