(本小题满分12分)如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA=a,点O、D分别是AC、PC的中点,OP⊥底面ABC。(1)求三棱锥P-ABC的体

(本小题满分12分)如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA=a,点O、D分别是AC、PC的中点,OP⊥底面ABC。(1)求三棱锥P-ABC的体

题型:不详难度:来源:
(本小题满分12分)
如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA=a,点O、D分别是AC、PC的中点,OP⊥底面ABC。

(1)求三棱锥P-ABC的体积;
(2)求异面直线PA与BD所成角余弦值的大小。
答案
(1)
(2)
解析
(1)
(2)设AB=a,由点O、D分别是AC、PC的中点知:为所求异面直线PA与BD所成角.
又OP⊥底面ABC,
 .从而
.
即异面直线PA与BD所成角余弦值的大小为
举一反三
如图,四棱柱ABCD—A1B1C1D1的底面边长和侧棱长都等于2,平面A1ACC1⊥平面ABCD,∠ABC=∠A1AC=60°,点O为底面对角线AC与BD的交点.
(Ⅰ)证明:A1O⊥平面ABCD;
(Ⅱ)求二面角D—A1A—C的平面角的正切值.
题型:不详难度:| 查看答案
三棱锥P—ABC中,△PAC是边长为4的等边三角形,△ABC为等腰直角三角形,∠ACB=90°,平面PAC⊥平面ABC,D、E分别为AB、PB的中点.
(1)求证:AC⊥PD;
(2)求二面角E—AC—B的正切值;



 
(3)求三棱锥P—CDE与三棱锥P—ABC的体积之比. 
题型:不详难度:| 查看答案
四棱锥的底面为正方形,底面上的点.
(1)求证:无论点上如何移动,都有
(2)若//平面,求二面角的余弦值.
题型:不详难度:| 查看答案
如图所示,在正方体中,上的点、的中点.
(Ⅰ)求直线与平面所成角的正弦值;
 (Ⅱ)若直线//平面,试确定点的位置.
题型:不详难度:| 查看答案
(12分)如图,在梯形中,的中点,将沿折起,使点到点的位置,使二面角的大小为
(1)求证:
(2)求直线与平面所成角的正弦值
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.