如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.(1)证明

如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.(1)证明

题型:不详难度:来源:
如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.

(1)证明直线BC∥EF;
(2)求棱锥FOBED的体积.
答案
(1)见解析  (2)
解析

(1)证明:如图所示,设G是线段DA延长线与线段EB延长线的交点.由于△OAB与△ODE都是正三角形,且OD=2,

所以OBDE,
OG=OD=2.
同理,设G′是线段DA延长线与线段FC延长线的交点,有OCDF,OG′=OD=2.
又由于G和G′都在线段DA的延长线上,
所以G与G′重合.
在△GED和△GFD中,
由OBDE和OCDF,
可知B、C分别是GE和GF的中点,
所以BC是△GEF的中位线,故BC∥EF.
(2)解:由OB=1,OE=2,∠EOB=60°,
知S△OBE=,
而△OED是边长为2的正三角形,
故S△OED=.
所以S四边形OBED=S△OBE+S△OED=.
过点F作FQ⊥AD,交AD于点Q,
由平面ABED⊥平面ACFD知,FQ就是四棱锥FOBED的高,且FQ=,
所以=FQ·S四边形OBED=.
举一反三
如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.

(1)当正视方向与向量的方向相同时,画出四棱锥PABCD的正视图(要求标出尺寸,并写出演算过程);
(2)若M为PA的中点,求证:DM∥平面PBC;
(3)求三棱锥DPBC的体积.
题型:不详难度:| 查看答案
如图所示,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC,设AD中点为P.

(1)当E为BC中点时,求证:CP∥平面ABEF;
(2)设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.
题型:不详难度:| 查看答案
如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC.

(1)证明:平面ACD平面
(2)若,试求该简单组合体的体积V.
题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2。

(1)求证:CE∥平面PAB;
(2)求四面体PACE的体积.
题型:不详难度:| 查看答案
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC,,

(1)证明:平面ACD平面ADE;
(2)记表示三棱锥A-CBE的体积,求函数的解析式及最大值
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.