有一个正四棱锥,它的底面边长和侧棱长均为a,现在要用一张正方形的包装纸将它完全包住(不能裁剪纸,但可以折叠)那么包装纸的最小边长应为 ______.
题型:不详难度:来源:
有一个正四棱锥,它的底面边长和侧棱长均为a,现在要用一张正方形的包装纸将它完全包住(不能裁剪纸,但可以折叠)那么包装纸的最小边长应为 ______. |
答案
由题意可知:当正四棱锥沿底面将侧面都展开时如图所示: 分析易知当以PP′为正方形的对角线时, 所需正方形的包装纸的面积最小,此时边长最小. 设此时的正方形边长为x则:(PP′)2=2x2, 又因为PP′=a+2×a=a+a, ∴( a+a)2=2x2, 解得:x=a. 故答案为:a. |
举一反三
若圆锥的底面直径和高都等于2R,则该圆锥的体积为( ) |
已知正四棱柱ABCD-A1B1C1D1的对角线AC1的长为,且AC1与底面所成角的余弦值为,则该正四棱柱的体积为______. |
轴截面是正方形的圆柱的侧面积是S,则与它的体积相等的球的表面积是 ______. |
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2. (Ⅰ)求四棱锥P-ABCD的体积V; (Ⅱ)若F为PC的中点,求证PC⊥平面AEF; (Ⅲ)求证CE∥平面PAB. |
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点. (1)求证:BE∥平面PDF; (2)求证:平面PDF⊥平面PAB; (3)求三棱锥P-DEF的体积. |
最新试题
热门考点