半径为4的球面上有A、B、C、D四点,AB,AC,AD两两互相垂直,则△ABC、△ACD、△ADB面积之和S△ABC+S△ACD+S△ADB的最大值为(  )A

半径为4的球面上有A、B、C、D四点,AB,AC,AD两两互相垂直,则△ABC、△ACD、△ADB面积之和S△ABC+S△ACD+S△ADB的最大值为(  )A

题型:不详难度:来源:
半径为4的球面上有A、B、C、D四点,AB,AC,AD两两互相垂直,则△ABC、△ACD、△ADB面积之和S△ABC+S△ACD+S△ADB的最大值为(  )
A.8B.16C.32D.64
答案
解析:C.根据题意可知,设AB=a,AC=b,AD=c,则可知AB,AC,AD为球的内接长方体的一个角.故a2+b2+c2=64,而S△ABC+S△ACD+S△ADB=
1
2
(ab+ac+bc)
a2+b2+a2+c2+b2+c2
4
=
a2+b2+c2
2
=32

故选 C.
举一反三
有两个相同的直三棱柱,高为
2
a
,底面三角形的三边长分别为3a,4a,5a(a>0),用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a的取值范围是______.魔方格
题型:上海难度:| 查看答案
三棱柱的一个侧面面积为S,此侧面所对的棱与此面的距离为h,则此棱柱的体积为______.
题型:不详难度:| 查看答案
已知六边形AC1BA1CB1中AC1=AB1,BC1=BA1,CA1=CB1,∠A+∠B+∠C=∠A1+∠B1+∠C1,求证△ABC面积是六边形AC1BA1CB1的一半.魔方格
题型:不详难度:| 查看答案
正方体的对角线长为3cm,则它的体积为(  )
A.4cm3B.8cm3C.
112
72
cm3
D.3


3
cm3
题型:不详难度:| 查看答案
一个圆柱的轴截面是正方形,其体积与一个球的体积之比为3:2.则这个圆柱的侧面积与这个球的表面积之比为(  )
A.1:1B.1:


2
C.


2


3
D.3:2
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.