如图,在边长为a的正方体ABCD-A1B1C1D1中,E,F,G,H分别是CC1,C1D1,D1D,CD的中点,N是BC的中点,M在四边形EFGH上及其内部运动

如图,在边长为a的正方体ABCD-A1B1C1D1中,E,F,G,H分别是CC1,C1D1,D1D,CD的中点,N是BC的中点,M在四边形EFGH上及其内部运动

题型:不详难度:来源:
如图,在边长为a的正方体ABCD-A1B1C1D1中,E,F,G,H分别是CC1,C1D1,D1D,CD的中点,N是BC的中点,M在四边形EFGH上及其内部运动,若MN平面A1BD,则点M轨迹的长度是______.
答案
连接GH、HN,则GHBA1,HNBD,
∵在边长为a的正方体ABCD-A1B1C1D1中,E,F,G,H分别是CC1,C1D1,D1D,CD的中点,
N是BC的中点,M在四边形EFGH上及其内部运动,MN平面A1BD,
∴平面A1BD平面GHN,
又点M在四边形上及其内部运动,
则点M须在线段GH上运动,即满足条件,GH=


2
2
a,
则点M轨迹的长度是


2
2
a

故答案为:


2
2
a
举一反三
如图:E、H分别是空间四边形ABCD的边AB、AD的中点,平面α过EH分别交BC、CD于F、G.
求证:EHFG.
题型:不详难度:| 查看答案
空间四边形ABCD的对棱AD,BC成60°的角,且AD=BC=a,平行于AD与BC的截面分别交AB,AC,CD,BD于E、F、G、H.
(1)求证:四边形EFGH为平行四边形;
(2)E在AB的何处时截面EFGH的面积最大?最大面积是多少?
题型:不详难度:| 查看答案
如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.
(I)求四棱锥P-ABCD的体积;
(Ⅱ)如果E是PA的中点,求证:PC平面BDE;
(Ⅲ)探究:不论点E在侧棱PA的任何位置,BD⊥CE是否都成立?若成立,证明你的结论;若不成立,请说明理由.
题型:不详难度:| 查看答案
如图,已知在侧棱垂直于底面三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠CAB=
3
5
,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1平面CDB1
(3)求三棱锥A1-B1CD的体积.
题型:不详难度:| 查看答案
如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D为C1B的中点,P为AB边上的动点.
(Ⅰ)当点P为AB的中点时,证明DP平面ACC1A1
(Ⅱ)若AP=3PB,求三棱锥B-CDP的体积.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.