如图,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点。(1)求证:BE//平面

如图,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点。(1)求证:BE//平面

题型:0127 模拟题难度:来源:
如图,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点。
(1)求证:BE//平面PAD;
(2)若AB=1,PA=2,求三棱锥E-DBC的体积。
答案
解:(1)取CD的中点M,连接EM,BM,则四边形ABCD为矩形

又∵
∴平面EBM∥平面APD
平面EBM
∴BE∥平面PAD;
(2)连接AC,BD,AC与BM交于点O,连接EO,则EO⊥AC,EO=
平面ABCD
举一反三
如图,DC⊥平面ABC,EB∥DC,AC= BC=EB=2DC=2,∠ACB=90°,P、Q分别为DE、AB的中点。
(1)求证:PQ∥平面ACD;
(2)求几何体B-ADE的体积。
题型:安徽省模拟题难度:| 查看答案
在空间中,有如下命题:
①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;
②若平面α∥平面β,则平面α内任意一条直线m∥平面β;
③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β;
④若平面α内的三点A,B,C到平面β的距离相等,则α∥β。
其中正确命题的个数为(    )。
题型:北京模拟题难度:| 查看答案
如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,AC∩BD=O,侧棱AA1⊥BD,点F为DC1的中点,
(1)证明:OF∥平面BCC1B1
(2)证明:平面DBC1⊥平面ACC1A1
题型:北京期末题难度:| 查看答案
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1、ACC1A1均为正方形,∠BAC=90°,D为BC的中点,
(1)求证:A1B∥平面ADC1
(2)求证:C1A⊥B1C。
题型:北京期末题难度:| 查看答案
如图,在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,点M是BC的中点,点N是AA1的中点。
(1)求证:MN∥平面A1CD;
(2)过N,C,D三点的平面把长方体ABCD-A1B1C1D1截成两部分几何体,求所截成的两部分几何体的体积的比值。
题型:广东省模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.