如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BC
题型:不详难度:来源:
如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证: (1)B,C,H,G四点共面; (2)平面EFA1∥平面BCHG. |
答案
证明:(1)∵G、H分别为A1B1,A1C1中点,∴GH∥B1C1, ∵三棱柱ABC-A1B1C1中,BC∥B1C1, ∴GH∥BC ∴B、C、H、G四点共面; (2)∵E、F分别为AB、AC中点, ∴EF∥BC ∴EF∥BC∥B1C1∥GH 又∵E、G分别为三棱柱侧面平行四边形AA1B1B对边AB、A1B1中点, ∴四边形A1EBG为平行四边形,A1E∥BG ∴平面EFA1中有两条直线A1E、EF分别与平面BCHG中的两条直线BG、BC平行 ∴平面EFA1∥平面BCHG. |
举一反三
已知平面α∥平面β,P是α、β外一点,过P点的两条直线PAC、PBD分别交α于A、B,交β于C、D,且PA=6,AC=9,AB=8,则CD的长为______. |
已知:平面α,β,γ,α∥β,α∩γ=a,β∩γ=b求证:a∥b. |
请先用文字叙述两个平面平行的性质定理,然后写出已知、求证、画出图象并写出证明过程. |
已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题: ①若m⊥α,m⊥β,则α∥β; ②若α⊥γ,β⊥α,则α∥β; ③若m∥α,n∥β,m∥n,则α∥β; ④若m、n是异面直线,m⊥α,m∥β,n⊥β,n∥α,则α⊥β 其中真命题是( ) |
已知平面α∥平面β,A,C∈α,B,D∈β,线段AB与线段CD交于点S,若AS=18,BS=27,CD=34,则CS=______. |
最新试题
热门考点