解:(Ⅰ)∵在Rt△PAB中,AP=AB=2,
∴
又E是PC的中点,∴BE⊥PC,
∵PA⊥平面ABC,又BD平面ABC ∴PA⊥BD,
∵AC⊥BD,又AP∩AC=A ∴BD⊥平面PAC,又PC平面PAC,
∴BD⊥PC,又BE∩BD=B,∴PC⊥平面BDE
(Ⅱ)∵PA⊥平面ABC,∴PA⊥BC,又AB⊥BC,
∴BC⊥平面BAP,BC⊥PB,
又由(Ⅰ)知PC⊥平面BDE,
∴直线PC与BC的夹角即为平面BDE与平面BAP的夹角,
在△PBC中,PB=BC,∠PBC=90°,∠PCB=45°
所以平面BDE与平面BAP的夹角为45°
A.AC⊥SB
B.AB∥平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角
D.AB与SC所成的角等于DC与SA所成的角
如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,OA=AB=PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q﹣ABCD的体积与棱锥P﹣DCQ的体积的比值.
© 2017-2019 超级试练试题库,All Rights Reserved.